期刊文献+

面向大规模图像库的高维索引机制研究 被引量:3

Research on High-dimensional Indexing Scheme for Large Image Database
下载PDF
导出
摘要 针对图像的72维HSV颜色特征,提出了一种新的降维索引方法.区别于传统的降维机制,该方法在降维的过程中不仅保留了原始数据空间整体的重要信息,也准确抓住了高维个体数据的重要特性.在大规模图像库上的实验表明,基于本文索引机制的搜索算法不仅显著减少了支配检索时间的I/O开销,而且具有较高的查询准确率. Aiming at the 72-dimensional HSV feature of image color, this paper proposes a new dimension reduction indexing method. Compared with other dimension reduction schemes, this method can not only retain the important information of the whole data space, but also preserve the important merits of high-dimensional individuals. The experiments on a large image database show both a remarkable reduction of I/O overhead of the data accesses which dominates the query time in the searches and a remarkable improvement performance in the searching.
出处 《小型微型计算机系统》 CSCD 北大核心 2007年第1期140-143,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60473117)资助.
关键词 高维索引 维度灾难 降维 high dimensional indexing curse of dimensionality dimension reduction
  • 相关文献

参考文献4

  • 1Jelena Tesic,Sitaram Bhagavathy,B S Manjunath.Issues concerning dimensionality and similarity search[C].Proceedings of 3rd International Symposium on Image and Signal Processing and Analysis.New York:IEEE,2003,272-277.
  • 2Imola K Fodor.A survey of dimension reduction techniques[R].LLNL Technical Report,June 2002.UCRL-ID-148494.
  • 3Xie Yu-xiang.Research on news video mining technology supporting intelligence analysis[D].Changsha:National University of Defense Technology,2004:39-41.
  • 4Roger Weber,Hans-J Schek,Stephen Blott.A quantitative analysis and performance study for similarity search methods in high-dimensional spaces[C].Proceedings of the 24th International Conference on Very Large Data Bases.San Francisco:Morgan Kaufmann,1998:194-205.

同被引文献15

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部