期刊文献+

改进Demons算法的非刚性医学图像配准 被引量:22

Non-rigid medical image registration based on improved Demons algorithm
下载PDF
导出
摘要 非刚性配准是医学图像处理的一个重要的研究方向。基于光流场模型的Demons算法由于仅依赖图像灰度梯度使图像变形,当缺乏梯度信息时图像的变形方向不能确定,因而容易造成误配准,且该算法只适合于单模态图像配准。本文针对最大互信息配准方法在多模态刚性配准中的成功应用,提出了一种可用于多模态图像配准的改进Demons算法。该方法在原有驱动图像变形力的基础上,增加两幅图像间互信息对当前变换的梯度作为附加力作用,使浮动图像向两图像间互信息增大的方向变形,正确地配准图像。为避免陷入局部极值并提高算法的运行速度,该方法在多分辨率策略下实现。使用单模态、多模态图像分别进行实验来验证此算法,并与原始Demons算法进行比较,实验表明,该方法能够快速地产生准确的配准变换。 Non-rigid registration is one of the important research issues in medical image processing field. An intensity-based automatic deformable image registration algorithm, known as the “Demons” algorithm, only depends on the image intensity gradients of the reference image to drive the floating image transform, it easily results in wrong registration when gradients are small, even being zeros. Moreover, this algorithm is not fit for the registration of multi-modality images. So, an improved “Demons” algorithm is proposed in this paper. The method adds additional external force based on the fact that the two images can make the mutual information between them maximal, ,and the force is defined as the gradient of mutual information between the two images with respect to the deformation field. Moreover, to avoid local extrema and speed up the registration process, the algorithm is performed in a multi-resolution manner. Experiments are conducted with both mono-modality and multimodality images, the results show that this improved method can get a accurate registration transformation quickly.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2007年第1期145-150,共6页 Optics and Precision Engineering
基金 国家自然科学基金项目(No.60373061) 天津市科技攻关培育项目(No.04310491R)
关键词 医学图像 非刚性配准 图像配准 多模态图像 互信息梯度 medical image non-rigid registration image registration multi-modality image mutual information gradient
  • 相关文献

参考文献11

  • 1ZITOVA B, FLUSSER J. Image registration methods: A survey [J]. Imag. & Vision Comput. , 2003,21:977-1000.
  • 2刘松涛,王学伟,周晓东,王成刚.基于传感器参数和目标轮廓中心的自动配准算法研究[J].光学精密工程,2005,13(3):354-363. 被引量:16
  • 3罗诗途,王艳玲,张玘,罗飞路.车载图像跟踪系统中电子稳像算法的研究[J].光学精密工程,2005,13(1):95-103. 被引量:28
  • 4THIRION J P. Image matching as a diffusion process: an analogy with Maxwell's Demons[J]. IVied. Imag. Anal., 1998, 2(3): 243-260.
  • 5TICHAVSKY P, WONG K T. New fluid-mechanics-based quasi-Bayesian statistical models of a nominally linear towed-array's shape deforraation[C]. Proc. ICASSP2002, Orlando, Florida, USA, 2002: 2841-2844.
  • 6WANG H, DONG L, O'DANIEL J, et al.. Validation of an accelerated 'Demons' algorithm for deformable image registration in radiation therapy[J]. Phys. Med. Biol, 2005,(50): 2887-2905.
  • 7XIE Z, NG L, GEE J C. Two algorithms for non-rigid image registration and their evaluation[J]. SPIE, 2003,5032:157-164.
  • 8MAES F, COLLIGNON A, VANDERMEULEN D, et al.. Multimodality image registration by maximization of mutual information[J]. IEEE Trans. Med. Imaging, 1997, 16(2):187-198.
  • 9VIOLA P, WELLS W M. Alignment by maximization of mutual information[J]. Int. J. Comput, Vision, 1997,24 (2):137-154.
  • 10ZADEH M B, JUTTEN C, NAYBI K. Differential of the mutual information [J]. IEEE Signal Proc. Lett. ,2004, 11(1): 48-51.

二级参考文献37

  • 1徐东燕,付忠良,阮波.一种基于多结构元的弱对比度图像的边缘检测方法[J].计算机应用,2004,24(6):108-110. 被引量:14
  • 2罗诗途,王艳玲,张玘,罗飞路.车载图像跟踪系统中电子稳像算法的研究[J].光学精密工程,2005,13(1):95-103. 被引量:28
  • 3BROWN L. A survey of image registration techniques[J]. ACM Computing Surveys, 1992, 24(4): 325-376.
  • 4ZITOVA B,FLUSSER J. Image registration methods:a survey[J]. Image and Vision Compu ting, 2003, 21: 977-1000.
  • 5BERNEA D I. A class of algorithms for fast digital image registration[J]. IEEE Transactions on Computer, 1972, 21(2): 179-186.
  • 6DAI X L,KHORRAM S. A feature-based image registration algorithm using improved chaincode representation combined with invariant moments[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2351-2362.
  • 7REDDY B S, CHATTERJI B N. An FFT based technique for translation, rotation, and scale in variant image registration[J]. IEEE Transactions on Image Processing, 1996, 5 (8): 1266-1271.
  • 8VIOLA P A,WELLS W M. Alignment by maximization of mutual information[C]. Proc. 5th Int. Conf. Computer Vision, Bosto, MA, 1995: 16-23.
  • 9VIOLA P A,WELLS W M. Alignment by maximization of mutual information[J]. International Journal of Computer Vision, 1997, 24(2): 137-154.
  • 10COLLIGNON A, MAES F, DELAERE D,et al. Automated multimodality image registration based on information theory[C]. Proc. Information Processing in Medical Imaging Conference, Norwell, MA,Kluwer, 1995:263-274.

共引文献42

同被引文献221

引证文献22

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部