期刊文献+

PHBV共混物纤维制备组织工程支架的研究 被引量:7

Study on the Tissue Engineering Scaffold Prepared by PHBV Composites Fiber
下载PDF
导出
摘要 利用聚羟基3-酸脂/聚羟基戊酸酯(PHBV)共混材料为基质,通过熔融纺丝、压片成型以及纤维熔结工艺,制得了组织工程用三维多孔支架。研究了PHBV其混材料的吸水半与溶胀比以及支架的熔结温度。结果表明:PHBV共混材料的吸水平较PHBV大为提高,有利于改善PHBV材料的亲水性。其溶胀比较低有助于保持组织工程爻架的尺寸稳定性。PHBV共混物纤维的最佳熔结温度在130-140℃范围.采用压片成型/纤维熔结法可制得孔径在300—500μm之间、贯通性好的三维立体支架。降解实验表明:支架材料的降解会引起pH值的微弱下降,支架材料的降解速率较慢。 In this paper, poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) composites were used to prepare three dimensional scaffolds for tissue engineering after melt-spinning, molding and fiber bonding. Surface characteristics, pore sizes and their distribution and the bonding temperature of the scaffold were investigated by optical microscope (OM), scanning electron microscopy (SEM) and differential scanning calorimeter (DSC), respectively. The percent water absorption and dilatability were studied as well. However, the dilatability was very low which will contribute to the dimensional stability. The optimum bonding temperature should be from 13-140℃ The pore sizes range from 300-500μm. The scaffold exhibited 3D, connected network macro structures. The degradation of the fiber would cause a tiny decline of the pH value and the weight of the matrix was almost unchanged for a period of 10 weeks. All the results indicated the novel 3D macro porous scaffold was suitable for tissue engineering.
出处 《合成纤维》 CAS 北大核心 2007年第1期16-20,共5页 Synthetic Fiber in China
关键词 纤维 组织工程 支架 多孔 生物可降解 fiber, tissue engineering, scaffold, porous, biodegradable
  • 相关文献

参考文献13

二级参考文献47

  • 1文学军,王小祥.金属生物材料的微粗糙表面及其生物学效应(Ⅰ)─—金属生物材料的微粗糙表面[J].生物医学工程学杂志,1997,14(1):77-80. 被引量:11
  • 2[1]Thomson RC, Wake MC, Yaszemski MJ, et al. Biodegradable polymer scaffolds to regenerate organs. Advances in Polymer Science, 1995; 122∶245
  • 3[2]Temenoff JS, Mikos AG. Review: Tissue engineering for regeneration of articular cartilage. Biomaterials, 2000; 21∶431
  • 4[3]Solchaga LA, Dennis JE, Goldberg VM, et al. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. Journal of Orthopaedic Research, 1999; 17∶205
  • 5[4]Mikos AG, Thorsen AJ, Czerwonka LA, et al. Preparation and characterization of poly(L-lactic acid) foams. Polymer, 1994; 35∶1068
  • 6[5]Mikos AG, Bao Y, Cima LG, et al. Preparation of Poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. Journal of Biomedical Materials Research, 1993a; 27∶183
  • 7[6]Mooney DJ, Mazzoni CL, Breuer C, et al. Stabilized polyglycolic acid fiber-based tubes for tissue engineering. Biomaterials, 1996b; 17∶115
  • 8[7]Mikos AG, Sarakinos G, Leite SM, et al. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials, 1993b; 14∶323
  • 9[8]Ishaug SL, Crane GM, Miller MJ, et al. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. Journal of Biomedical Materials Research, 1997; 36∶17
  • 10[9]Thomson RC, Yaszemski MJ, Powers JM, et al. Hydroxyapatite fiber reinforced poly(a-hydroxyester) foams for bone regeneration. Biomaterials, 1998; 19∶1935

共引文献62

同被引文献87

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部