期刊文献+

天气图上的涡旋动力学 被引量:2

Vortex Dynamics on Synoptic Maps
下载PDF
导出
摘要 天气图上有许多种涡旋型式。本文说明了天气图上的流场可以分解为旋转场和变形场地转无摩擦的气旋、反气旋的涡旋型式是围绕中心点的闭合环流;考虑摩擦的气旋、反气旋的流型是围绕焦点的螺旋型式;鞍型场有4个涡旋中心点(2个气旋和2个反气旋)与1个鞍点;阻塞高压和切断低压由1个涡旋中心点与1个鞍点组成。从以上结果可以清楚地了解实际大气涡旋形态的动力和形成机制。 There are many vortex patterns on synoptic maps. It is shown from this thesis that flow fields on synoptic maps can be decomposed into rotation and deformation fields. Geostrophic non-frictional cyclone and anticyclone vortex patterns are closed circulations around the center point, streamlines of frictional cyclone and anticyclone patterns have spiral forms around the focus point. Saddle fields have four vortex centers ( two cyclones and two anticyclones) and a saddle point. Blocking high pressure and cut-off low pressure patterns consist of a vortex center and a saddle point. From the above results, we can clearly understand the actual atmospheric vortex dynamics and its mechanisms of formation.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第1期17-22,共6页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金重点项目(90511009)资助项目
关键词 大气流场 涡旋 速度场分解 奇点 atmospheric flow field vortex decomposition of velocity field singular point
  • 相关文献

参考文献9

  • 1[日]栗原宜夫著,田春生译.大气动力学入门.北京:气象出版社,1984.
  • 2乔全明,阮旭春.分析天气.北京:气象出版社,1990.
  • 3Moffatt H K. Simple topological aspects of turbulence vorticity dynamics//TATSUMI T. The Proceedings of the IUTAM Symposium on Turbulence and Chaotic Behavior in Fluids. Amsterdam: North-Holland, 1984: 433-532.
  • 4梁福明,时少英,刘式达,刘式适,付遵涛,辛国君.大气流场的拓扑结构[J].地球物理学报,2004,47(4):584-589. 被引量:3
  • 5刘式达,刘式适,付遵涛,辛国君,梁福明.从二维地转风到三维涡旋运动[J].地球物理学报,2003,46(4):450-454. 被引量:6
  • 6刘式适,刘式达.异宿轨道与全球大气运动的演化[J].北京大学学报(自然科学版),1994,30(5):607-617. 被引量:2
  • 7Liu S D, Xin G J, Liu S K,et al. The 3D spiral pattern in the atmosphere. Advances in tmospheric Sciences, 2000, 17(14) : 519-524.
  • 8Howaed B. Synoptic dynamic meteorology in midlatitudes.New York: Oxford University Press, 1992: 81-124.
  • 9刘式适 刘式达编著.大气动力学[M].北京: 北京大学出版社,1999..

二级参考文献35

  • 1[1]H K Moffatt. Simple topological aspects of turbulence vorticity dynamics. In: T. Tatsumi eds., The Proceedings of the IUTAM Symposium on Turbulence and Chaotic Behavior in Fluids. Amsterdam:North-Holland, 1984
  • 2[2]H K Moffatt. Helicity and the calugareamu invariant. Proc. R. Soc.Lond., A.4399:411~429
  • 3[3]R L Ricca, M A Burger. Topological ideas and fluid mechanics.Physics Today, 1996, 49(12): 24~30
  • 4[4]P G Bakker. Bifurcation in Flow Patterns: Some Applications of the Qualitative Theory of Differential Equations in Fluid Dynamics. Dordrecht/Boston/London: Kluwer Academic Publishers, 1991, 1 ~ 209
  • 5[6]E Atlee Jackson. Perspectives of Nonlinear Dynamics. Cambridge:Cambridge University Press, 1990, Volume 1, 2
  • 6[7]H K Moffatt. The topology of scalar fields in 2-D and 3-D turbulence.In: T. Kambe et al eds., IUTAM Symposium on Geometry and Statistics of Turbulence. Netherlands: Klnwer Academic Publishers,2001, 13 ~ 22
  • 7[9]S D Liu, G J Xin, S K Liu, F M Liang. The 3D spiral pattern in the atmosphere. Advances in Atmospheric Scieness, 2000, 17(4): 519 ~524
  • 8[10]V I Arnold, B A Khesin. Topological Methods in Hydrodynamics,Applied Mathematical Science 125. New York: Springer, 1998, 374
  • 9[11]V I Arnold, B A Khesin. Topological methods in hydrodynamics,Annual Review of Fluid Mechanics, 1992, 24:145 ~ 166
  • 10[12]V I Arnold. Geometrical Methods in The Theory of Ordinary Differential Equations. New York: Springer, 1989, 508

共引文献7

同被引文献13

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部