摘要
随着CFD技术的发展,基于伴随方法的求解Euler和NS方程的气动优化设计已成为流体力学形状反问题研究中的热门领域。本文应用该方法对透平叶栅进行三维气动优化设计,详细推导了Euler方程伴随系统的偏微分方程组及其各类边界条件,首次给出了透平内流伴随方程边界条件的具体形式,并给出伴随变量的物理意义。结合拟牛顿算法发展了三维透平叶栅形状反问题气动优化算法,并给出了算法的流程。
With the development of CFD technology, aerodynamic optimal design based on adjoint method by using Euler/NS equations has been the highlight in shape inverse problem of CFD field. Using adjoint method, the aerodynamic optimal design for three-dimensional turbomachinery blades is studied in this paper. The PDE equations in adjoint system of Euler equations are deduced in detail, and the formulations of adjoint equations' boundary conditions for the internal flow of turbomachinery are first presented, and then the significance of adjoint variables is given. Combining quasi-Newton method we have developed an algorithm of shape inverse design for turbine blades and finally give the flow process of this optimization algorithm.
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
2007年第1期33-36,共4页
Journal of Engineering Thermophysics
关键词
反问题
形状优化设计
敏感性导数
EULER方程
伴随方程
inverse problem
optimal shape design
sensitivity derivative
Euler equation
adjoint equation