期刊文献+

基于图像分块的背景模型构建方法 被引量:12

Approach of Constructing Background Model Based on Image Blocks
下载PDF
导出
摘要 提出了一种基于图像分块的背景模型构建方法,目的是为了减少像素形式的背景模型所带来的计算冗余,提高系统的运行速度.文中回顾了目前主要的背景提取方法,给出了图像分块的方式以及几种常用的图像块特征,并且利用图像块的特征来构建自适应的高斯混合模型.通过一组视频将该方法与传统的像素形式的背景模型进行了实验对比;结果表明,该方法在保持相同的目标检测率的情况下,大大提高了系统的运行效率. Based on image blocks, a method for constructing background models is presented to reduce computation redundancy arising from pixel-background model and to improve execution speed of the system. After reviewing the main methods of background extraction up to now, we present a partitioning method and some common features for the image blocks, and construct some adaptive mixture Gaussian models with these features. Experimental comparison between this method and the traditional pixel-background models is made with a group of videos. The results show that this method enhances system execution efficiency greatly at the same finding-out rates.
出处 《机器人》 EI CSCD 北大核心 2007年第1期29-34,共6页 Robot
关键词 视频监控 背景模型 运动目标 高斯分布 video surveillance background model moving object Gaussian distribution
  • 相关文献

参考文献9

  • 1Haritaoglu I, Harwood D, Davis L. W^4 : real-time surveillance of people and their activities [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 ( 8 ) : 809 - 830.
  • 2Wren C, Azarbayejani A, Darrell T, et al. Pfinder: real-time tracking of the human body[ J]. IEEE Transactions on Pattern Analysisand Machine Intelligence, 1997, 19(7) : 780 -785.
  • 3Friedman N, Russell S. Image segmentation in video sequences: aprobabilistie approach [ A ]. Proceedings of the Thirteenth AnnualConference on Uncertainty in Artificial Intelligence[ C]. San Francisco: Morgan Kaufmann Publishers, 1997. 175 -IS1.
  • 4Stauffer C, Grimson W E L. Adaptive background mixture modelsfur real-time tracking[ A ]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition [ C ].Piscataway, USA: IEEE, 1999. 246-252.
  • 5KaewTraKulPong P, Bowden R. An improved adaptive backgroundmixture model for real-time tracking with shadow detection [ A ].Proceedings of the 2nd European Workshop on Advanced VideoBased Surveillance Systems[ C]. USA: Kluwer Academic Publishers, 2001, 135-144.
  • 6Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction[A]. Proceedings of the International Conferenceon Pattern Recognition[ C]. Piscataway, USA : IEEE, 2004. 28 -31.
  • 7Lee D S, Hull J J, Erol B. A Bayesian framework for Gaussian mixture background modeling [ A ]. Proceedings of the IEEE International Conference on Image Processing [ C ]. New York, USA:IEEE, 2003. 973 - 976.
  • 8Heikkila M, Pietikainen M. A texture-based method for modelingthe background and detecting moving objects [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (4) :657 - 662.
  • 9Jain R, Kasturi R, Schunck B G. Machine Vision(英文版)[ M].北京:机械工业出版社,2003.

同被引文献106

引证文献12

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部