期刊文献+

基于自适应表面模型的概率视频跟踪算法

Probabilistic visual tracking based on adaptive appearance model
下载PDF
导出
摘要 提出一种鲁棒自适应表面模型,该模型中每个像素值的变化过程由一混合高斯分布描述.为了适应目标表面的变化,这些高斯参数在跟踪期间通过在线的EM算法自适应更新;在估计目标状态时,采用了粒子滤波算法,设计了基于自适应表面模型的观测模型;在处理遮挡时,采用了一种鲁棒估计技术.多组试验结果表明,该算法对光照变化、姿态变化、部分或完全遮挡下的跟踪具有较强的鲁棒性. A robust and adaptive appearance model is proposed, in which the value of each pixel over time is modeled by a mixture of Gaussians. To adapt to changes in object appearance, an online expectation maximization (EM) algorithm is developed to update the Gaussian parameters. When estimating the target state, particle filter is adopted, and the observation model is designed based on the adaptive appearance model. Occlusion is handled using a robust estimation technique. Numerous experimental results show that the proposed algorithm can track targets well under illumination changes, large pose variations, and partial or full occlusions.
出处 《控制与决策》 EI CSCD 北大核心 2007年第1期53-58,共6页 Control and Decision
基金 国家自然科学基金项目(60375008) 国家科技攻关计划世博科技专项(2004BA908B07) 高校博士点基金项目(20020248029) 航空科学基金项目(02D57003) 航天支撑技术基金项目(20031.302)
关键词 混合高斯模型 自适应表面模型 在线EM算法 鲁棒估计技术 粒子滤波 Gaussian mixture model Adaptive appearance model Online EM algorithm Robust estimation technique Particle filter
  • 相关文献

参考文献12

  • 1Comaniciu D,Ramesh V,Meer P.Real-time tracking of non-rigid objects using mean shift[C].Proc IEEE Conf on Computer Vision and Pattern Recognition.South Carolina:Hiltion Head Island,2004,2:142-149.
  • 2Liu T L,Chen H T.Real-time tracking using trust-region methods[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2004,26(3):397-402.
  • 3Hager G D,Belhumeur P N.Efficient region tracking with parametric models of geometry and illumination[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1998,20(10):1025-1039.
  • 4Nguyen H T,Worring M,Van Den Boomgaard R.Occlusion robust adaptive template tracking[C].Proc Int Conf on Computer Vision.Vancouver,2001,1:678-683.
  • 5Sidenbladh H,Black M J,Fleet D J.Stochastic tracking of 3D human figures using 2D image motion[C].Proc European Conf on Computer Vision.Dublin,2000,2:702-718.
  • 6Wu Y,Huang T S.Color tracking by transductive learning[C].Proc IEEE Conf on Computer Vision and Pattern Recognition.South Carolina:Hilton Head Island,2000,1:133-138.
  • 7Ross D,Lim J,Yang M-H.Adaptive probabilistic visual tracking with incremental subspace update[C].Proc European Conf on Computer Vision.Pranue,2004,2:470-482.
  • 8Jepson A D,Fleet D J,El-Maraghi T F.Robust online appearance models for visual tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(10):1296-1311.
  • 9Zhou S K,Chellappa R,Moghaddam B.Visual tracking and recognition using appearance-adaptive models in particle filters[J].IEEE Trans on Image Processing,2004,13(11):1491-1506.
  • 10Dempster A P,Laird N M,Rubin D B.Maximum likelihood from incomplete data via the EM algorithm[J].J of the Royal Statistical Society B,1977,39(1):1-38.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部