期刊文献+

微机械悬臂梁中的机械噪声机制分析 被引量:3

Noise Mechanisms in Micromechanical Cantilever
下载PDF
导出
摘要 本文采用能量统计分布方法研究微机械悬臂梁的噪声模型,对热机械噪声理论模型进行了拓展和修正,使之适用于低温和高频条件.研究了温度、压力和频率对热机械噪声、温漂噪声和吸附-脱附噪声的影响.根据研究结果对静态检测悬臂梁和动态频率响应悬臂梁传感器进行了具体分析.对于静态下工作的微机械悬臂梁,振幅的随机变化取决于热机械噪声.对于工作在谐振状态的微米尺度悬臂梁,在室温常压下热机械噪声是主要的噪声机制;当尺寸进一步缩小至纳米尺度时,表面效应变得显著,吸附-脱附噪声成为主要的噪声机制.基于对不同情况下噪声特性的分析,对微机械悬臂梁传感器的优化设计规则进行了探讨. A modified model of thermal-mechanical noise is developed to make it adaptable to the micmmechanical cantilever in high frequency or low temperature, The influences of temperature, pressure and resonance frequency on thermal-mechanical noise, temperature-fluctuation noise and adsorption-desorption noise are investigated. In the static mode of micromechanical cantilever, the displacement resolution is determined by the thermal-mechanical noise. In the dynamic mode of micromechanical cantilever, the thermal-mechanical noise is main noise mechanism, and the frequency stability is dominated by adsorption-desorption noise while the size shrink to nano-scale, Present noise mechanism investigation is general and instructive in the design methodology of micromechanical cantilever.
出处 《传感技术学报》 CAS CSCD 北大核心 2007年第1期101-106,共6页 Chinese Journal of Sensors and Actuators
基金 国家重点基础研究发展规划项目资助(973计划2006CB300405) 国家自然科学基金项目资助(60376038)
关键词 微电子机械系统 噪声机制 微机械悬臂梁 分辨率 MEMS noise mechanism micromechanical cantilever resolution
  • 相关文献

参考文献14

  • 1Vig JR,Kim Y.Noise in Microelectromechanical System Resonators[C].Ultrasonics,Ferroelectrics and Frequency Control,IEEE Transactions on,1999,46:1558-1565.
  • 2Djuri(c) Z.Noise Sources in Microelectromechanical Systems[C].Proc.22nd International Conference on Microelectronics,2000,1:85-96.
  • 3Djuri(c) Z.Mechanisms of Noise Sources in Microelectromechanical Systems[J].Microelectronics Reliability,2000,40:919-932.
  • 4Djuri(c) Z,Jaksi(c) O,Randjelovi(c) D.Adsorption and Desorption Noise in Micromecahncial Resonant Structures[J].Sensors and Actuators,2002,96:244-251.
  • 5Djuri(c) Z,Joki(c) I,Frantlovi(c) M,Jaksi(c) O.Infulence of Adsorption-Desorption Process on Resonant Frequency and Noise of Micro-and Nanocantilevers[C].Proc.23nd International Conference on Microelectronics,2002,1:243-246.
  • 6Cleland AC,and Roules ML.Noise Process in Nanomechanical Resonators[J].J.Appl.Phys.,2002,92:2758-2769.
  • 7Ekinci KL,Yand YT,Roukes ML.Ultimate Limits to Inertial Mass Sensing Based upon Nanoelectromechanical Systems[J].J.Appl.Phys.,2004,95:2682-2689.
  • 8Jonhson JB.Thermal Agitation of Electricity in Conductors[J].Phys.Rev.,1928,32:97-109.
  • 9Nyquist H.Thermal Agitation of Electric Charge in Conductors[J].Phys.Rev.,1928,32:110-113.
  • 10Stievater TH,Rabinovich WS,Newman HS,Mahon R,Goetz PG.,Ebel JL,McGee DJ.Measurement of ThermalMechanical Noise in Microelectromechanical Systems[J].Appl.Phys.Lett.,2002,81:1779-1781.

同被引文献15

  • 1鲍海飞,李昕欣,王跃林.微悬臂梁法向弹性系数的标定方法与分析[J].测试技术学报,2006,20(1):21-26. 被引量:11
  • 2苏汝铿.统计物理学[M].北京:高等教育出版社,2004:380-401.
  • 3Hutter J L,Bechhoefer J.Calibration of Atomic-Force Microscope Tips[J].Rev Sci Instrum,1993,64(7):1868-1873.
  • 4Butt H J,Jaschke M.Calculation of thermal noise inatomic force microscopy[J].Nanotechnology,1995,6(1):1-7.
  • 5Biedermann L B,Tung R C,Raman A,et al.Charac-terization of silver-gallium nanowires for force andmass sensing applications[J].Nanotechnology,2010,21(30):305701.
  • 6Treacy M M J,Ebbesen T W,Gibson J M.Excep-tionally high Young's modulus observed for individ-ual carbon nanotubes[J].Nature,1996,381(6584):678-680.
  • 7Biedermann L B,Tung R C,Raman A,et al.Flexuralvibration spectra of carbon nanotubes measured u-sing laser Doppler vibrometry[J].Nanotechnology,2009,20(3):235702.
  • 8陈旭.自动化领域中高速高性能数字物理噪声源的设计与芯片制造[D]{H}合肥:合肥工业大学,20101846-1853.
  • 9石虎山;赵升吨;范淑琴.基于多平面波源的气动阀用消声器传递损失分析[A]第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议,20111084-1091.
  • 10郭小霞;杨德森;时胜国.基于声压-振速联合处理的相干声源分离技术研究[A],2011437-438.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部