期刊文献+

广义自相似测度的Fourier变换的几个性质

Some properties on Fourier transform of generalized self-similar measures.
下载PDF
导出
摘要 设{Sj}jm=1是Rd上的一族压缩相似映射,Sj(x)=ρjRjx+bj(1≤j≤m),其中0<ρj<1,Rj是d×d维正交矩阵,K是该函数迭代系统的不变集.设{pj}jm=1是Rd上的正连续函数,且{logpj}jm=1满足Dini条件.FANAi-hua等证明了存在惟一的支撑在K上的正则Borel概率测度μ满足λμ=∑mj=1pj(x)μS-j1.本文证明了μ要么关于Lebesgue测度奇异,要么关于Lebesgue测度绝对连续.然后讨论了μ的Fourier变换的渐近性质. Let Sj (x) =pjRjx+bj (1≤j≤m) be a family of contractive self-similar mappings on R^d, in which 0〈pj 〈 1 and R: is orthogonal matrix. K is the attractor of the IFS. Let {pj }mj=1 be positive continuous real-valued function on R^d , and {logpi }mj=1 satisfy the Dini condition. There exists the unique probability measure that satisfies the equation λμ = m∑j=1 pj (x)μ · S^-1i . it is proved that if μ is not singular, then it is absolutely continuous with respect to Lebesgue measure. Then the asymptotic behavior of Fourier transform of μ is discussed.
作者 王会敏
机构地区 浙江大学数学系
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2007年第1期7-11,共5页 Journal of Zhejiang University(Science Edition)
关键词 自相似测度 DINI条件 绝对连续 FOURIER变换 self-similar measure Dini condition absolutely continuous Fourier transform
  • 相关文献

参考文献12

  • 1FALCONER K J.The Geometry of Fractal Sets[M].Cambridge:Cambridge Tracts in Mathematics,1986.
  • 2HUTCHINSON J E.Fractals and self-similarity[J].Indiana Univ Math J,1981,30:713-741.
  • 3STRICHARTZ R S.Self-similar measures and their Fourier transforms Ⅰ[J].Indiana Univ Math J,1990,39(3):797-817.
  • 4STRICHARTZ R S.Fourier asymptotics of fractal measures[J].J Functional Anal,1990,89:154-187.
  • 5STRICHARTZ R S.Self-similar measures and their Fourier transforms Ⅱ[J].Trans Amer Math Soc,1993,336:335-361.
  • 6STRICHARTZ R S.Self-similar measures and their Fourier transforms Ⅲ[J].Indiana Univ Math J,1993,42:367-411.
  • 7STRICHARTZ R S.Self-similarity in harmonic analysis[J].J Fourier Anal Appl,1994,1:1-37.
  • 8STRICHARTZ R S,TAYLOR A,ZHANG T.Densities of self-similar measures on the line[J].Experimental Math,1995,4:101-128.
  • 9FAN Ai-hua,LAU Ka-sing.Iterated function system and Ruelle operator[J].J Math Anal Appl,1999,231:319-344.
  • 10MAULDIN D,SIMON K.The equibalence of some Bernoulli convolutions to Lebesgue measure[J].Proc Amer Math Soc,1998,126(9):2733-2736.

二级参考文献8

  • 1BARNSLEY M F. Fractals Everywhere[M]. New York: Academic Press, 1988.
  • 2FALCONER K J. Fractal Geometry; Mathematical Foundations and Applications[M]. New York :John Wiley & Sons, 1990.
  • 3XIE Feng, YIN Yong-cheng, SUN Ye-shun. Uniform perfectness of self-affine sets[J]. Proc of Amer Math Soc, 2003,131:3053-3057.
  • 4POMMERENKE Ch. Uniformly perfect sets and the poincare met ric [J]. Arch Math, 1979,32:192 - 199.
  • 5HINKKANEN A, MARTIN G J. Julia sets of rational semigroups [J]. Math Z, 1996,222 (2): 161 -169.
  • 6STANKEWITZ R. Uniformly perfect sets, rational semigroups, Kleinian groups and IFS's [J]. Proc Amer Math Soc, 2000,128(3): 2569-2575.
  • 7STANKEWITZ R. Uinformly perfect analytic and conformal attractor sets[J]. Bull London Math Soc,2001, 33 (3):320-330.
  • 8CARLESON L, GAMELIN T. Complex Dynamics,Universitext: Tracts in Mathematics [M]. New York: Springer-Verlag, 1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部