期刊文献+

解非线性偏微分方程的插值小波算法

Interpolating wavelet method for solving nonlinear partial differential equations.
下载PDF
导出
摘要 利用集小波分解和分形压缩变换思想构造了与标准小波具有类似尺度特点的连续插值小波基,给出了一维和二维空间中的插值型小波函数例子.利用集小波分解集和基函数的插值性质获得了由集小波分解点确定的积分公式,使非线性部分计算量由随尺度的平方增长关系变为线性增长关系.为说明方法的可行性,最后结合New-ton迭代法给出了一个数值例子. There is interpolation wavelet scheme for solving nonlinear partial differential equations. By using set wavelet decomposition and contraction fractal transforms, interpolation wavelets basis which have the same scale properties as standard wavelet basis is constructed and interpolation wavelet functions in one dimension and two dimension spaces is given. To overcome the problems of nonlinearity, set wavelet decomposition and properties of ba- sis functions are applied to obtain knot oriented quadrature rules. A numerical example, confirming the applicability of our scheme, is presented.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2007年第1期28-32,共5页 Journal of Zhejiang University(Science Edition)
关键词 集小渡分解 插值小波 非线性 偏微分方程 set wavelet decomposition interpolation wavelet nonlinear partial differential equation
  • 相关文献

参考文献8

  • 1DAHLKE S,DAHMEN W,HOCHMUTH R,et al.Stable multiscale bases and Local error estimation for elliptic problems[J].Appl Numer Math,1997,23:21-47.
  • 2COHEN A,DAHMEN W,DEVORE R.Adaptive wavelet methods for elliptic operator equations-convergence rates[J].Math Comput,2001,70(233):27-75.
  • 3VASILYEV O V,PAOLUCCI S.A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in finite domain[J].J Comput Phys,1996,125(2):498-512.
  • 4ALPERT B,BEYLKIN G,GINES D,et al.Adaptive solution of partial differential equations in multiwavelet bases[J].J of Computational Physics,2002,182:149-120.
  • 5CHEN Z,CHARLES A MICCHELLI,XU Y.A construction of interpolating wavelets on invariant sets[J].Math Comp,1999,68:1569-1587.
  • 6CABRELLI C A,MOLTER U M.Generalized selfsimilarity,wavelet and image analysis[J].Math Anal Appl,1999,230:251-260.
  • 7MARION M,XU J.Error estimates on a new nonlinear Calerkin method based on two-grid finite element[J].SIAM J Numer Anal,1995,32:1170-1184.
  • 8RHEINBOLDT W.Methods for Solving Systems of Nonlinear Equations[M].Phila:SIAM Book Series,1974.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部