期刊文献+

高阶线性脉冲泛函微分方程解的振动性与渐近性研究

Oscillatory and asymptotic behavior of higher order functional differential equation with impulses
下载PDF
导出
摘要 对高阶线性脉冲泛函微分方程振动性和渐近性态进行了研究,得到解振动和渐近的充分条件. The oseiUatory and asymptotic behavior of higher order linear functional differential equation with impulses were investigated. Some sufficient conditions about oscillatory and asymptotic behavior of the higher order linear functional differential equations with impulses were obtained.
出处 《仲恺农业技术学院学报》 2006年第4期22-27,共6页 Journal of Zhongkai Agrotechnical College
基金 广州市科技计划(2006J1-C0341)资助项目
关键词 高阶 脉冲 振动 渐近 泛函微分方程 higher order impulse oscillation asymptotic FDE
  • 相关文献

参考文献9

  • 1LAKSHMIKANTHAM V.BAINOV D D,SIMEONOV P S.Theory of Impulsive Differential Equations[M].Singapore:World Scientific Singapore,1989.
  • 2BAINOV D D,SIMEONOV P S.Systems with Impulse Effect; Stability,Theory and Applications[M].New York:john Wiley and Sons,1989.
  • 3BAINOV D D,SIMEONOV P S.Impulsive differential equations:asymptotic properties of the solutions[M].Bart's World Scientific Publishing Co.Pte.Ltd,1995.
  • 4YONGSHAO Chen,WEIZHEN Feng.Oscillations of Second Order Non-linear ODE with Impulses[J].J Math Anal Appl,1997,210:150-169.
  • 5JURANG Yan,AIMIN Zhao.Oscillation and Stability of Linear Impulsive Delay Differential Equations[J].J Math Anal Appl,1998,227:187-194.
  • 6JIAOWAN Luo,LOKENATH Debnath.Oscillations of Second-Order Nonlinear Ordinary Differential Equations with Impulses[J].J Math Anal Appl,1999,240:105-114.
  • 7陈永劭,冯伟贞.二阶脉冲微分方程的解的渐近性态[J].华南师范大学学报(自然科学版),2000,32(1):13-17. 被引量:13
  • 8许文杰.三阶脉冲微分方程的振动性与渐近性[J].华南师范大学学报(自然科学版),2001,33(2):59-64. 被引量:14
  • 9申建华,庾建设.具有脉冲扰动的非线性时滞微分方程[J].应用数学,1996,9(3):272-277. 被引量:32

二级参考文献8

  • 1申建华,庾建设.具有脉冲扰动的非线性时滞微分方程[J].应用数学,1996,9(3):272-277. 被引量:32
  • 2[1]L Hatvani.On the asymptotic behavior of the solutions of (p(t)x′)′+q(t)f(x)=0[J].Pabl Math,1972,19:225~237
  • 3[2]J R Graef,P W Spikes.Asymptotic behavior of solutions of a second order nonlinear differential equation[J].J Differential Equations,1975,17:461~476
  • 4[3]M K Kwong,A Zettl.Asymptotically constant functions and second order linear oscillation[J].J Math Anal Appl,1983,93:475~494
  • 5[4]M Marini,P Zezza.On the asymptotic behavior of a class of second order linear differential equations[J].J Diff Eqs,1978,28:1~17
  • 6[5]P S Simeonov,D D Bainov.On the asymptotic equivalence of systems with impulse effect[J].J Math Anal Appl,1982,135:591~610
  • 7[6]P S Simeonov,D D Bainov.Asymptotic properties of the solutions of differential equations with impulse effect[J].Atti Sem Mat Fis Univ Modena,1990,XXXVIII:19~27
  • 8[7]D D Bainov,P S Simeonov.Impulsive Differential Equations:Asymptotic Properties of the Solutions[M].Singapore:World Scientific,1994

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部