摘要
对随机离散事件系统模型,用实验(或模拟)方法进行扰动分析(perturbationAnalysis,简称PA),对固定的样本,得到性能指标(设为J(θ))对可调参数θ的梯度的估计.用固定长度的观测值(如L个顾客)估计,将估计值代入随机逼近算法,递推地求最优参数,得到了基于扰动分析的优化算法.实验结果表明,这种优化算法,有较好的收敛速度.对串行生产线,提出每离开L个顾客递推一次参数的优化算法,并证明了这种算法可收敛到使J(θ)达极小的θ.
Based on a fixed sample path, perturbation analysis (PA) offers an estimate for the gradient - dJ(θ)/dθ of performance measure J(θ) with respect to the adjustable parameter θ for stochastic discrete event systems. The PA estimate of dJ(θ)/dθ using fixed length of observation (e. g., L customers) is then put into the stochastic approximation algorithm which recursively optimize the parameter. This is the socalled 'Single-Run-Optimization' algorithm. Experiment results show that this kind of algorithms has relatively fast convergence rate. For production systems in series this paper proposes an optimization algorithm which iterates once after every L customers' departure and proves that the algorithm converges to θ which minimizes J(θ).
出处
《自动化学报》
EI
CSCD
北大核心
1996年第5期520-531,共12页
Acta Automatica Sinica
基金
"八六三"CIMS主题基金
国家自然科学基金
中国博士后科学基金
中国科学院系统科学研究所系统控制开放实验室资助
关键词
离散事件系统
扰动分析
随机优化
生产线
Stochastic discrete event systems
perturbation analysis
stochastic optimization