期刊文献+

基于NARA模型和筛选方法的并行神经网络体系结构 被引量:2

A PARALLEL NEURAL NETWORK ARCHITECTURE BASED ON NARA MODEL AND SIEVING METHOD
下载PDF
导出
摘要 本文将介绍一种并行的神经网络体系结构(PNN),它是以NARA模型和筛选方法为基础的.PNN由一个控制网络CN和一组识别网络RNi(i=1,2,3,…,p)组成,它能够自动地将复杂问题分解为简单问题,容易实现追加学习,并且可以分析其内部状态,其结构也是模块化结构,易于硬件电路实现,可以作为一种计算机运算部件,而且PNN具有较高的运行效率. A parallel neural network architecture (PNN) based on NARA model and sieving method is presented in this paper. PNN is composed of a control network (CN) and a series of recognition networks (RNi, i=1,2,…, p). It has several attractive properties such as automatic decomposition of learning tasks, easy implementation of additional learning and easy analysis of internal states. PNN has modular structure and each model of it can be used as a computing component. So it can be implemented with hardware easily and work with high efficiency.
出处 《计算机学报》 EI CSCD 北大核心 1996年第9期679-686,共8页 Chinese Journal of Computers
基金 国家自然科学基金
关键词 神经网络 并行处理 网络结构 NARA模型 筛选方法 Neural networks, concurrent processing, network architecture, additional learning
  • 相关文献

参考文献3

  • 1王国胤,Proc of International Conference on Neural Networks,1995年
  • 2王国胤,Proc of the Intelligent Data Analysis Symposium,1995年
  • 3Lu B,Proc of IEEE International Conference on Neural Newtowks,1994年

同被引文献29

  • 1李旗堂,李娜,宋国杰.一个面向大规模BP神经网络并行算法[J].河南广播电视大学学报,2004,17(1):77-80. 被引量:2
  • 2Plagianakos V P, Magoulas G D, Nousis N K, et al. PVM-based Training of Large Neural Architectures [C]//Proceedlags of the INNS-IEEE International Joint Conference on Neural Networks. NJ: IEEE Publisher, 2001:2584 -2589.
  • 3Zickenbeiner S, Wendt M, Klauer B, et al. Pipelining and Parallel Training of Neural Networks on Distributed-Memory Multiprocessors [C]//IEEE International Conference on Neural Networks. NJ: IEEE Publisher, 1994: 2052 --2057.
  • 4Han Jiwwei,Kamber v.数据挖掘:概念与技术(第2版)[M].2007:277-280.
  • 5Zhu L,Yuan G,Du Q.An efficient explicit/implicit domain decomposition method for convection-diffusion equations[J].Numerical Methods for Partial Differential Equatios,2010,26(4):852-873.
  • 6Bazán F S V,Gratton S.An Explicit Jordan Decomposition of Companion Matrices[J].TEMA Tend.Mat.Apl.Comput,2006,7:209-218.
  • 7Rajkumar Murthy B E.Parallel alternating explicit implicit domain decomposition algorithm[D].Texas Tech University,2006.
  • 8Jenkins R E,Yuhas B P.A simplified neural network solution through problem decomposition The case of the truck backerupper[J].IEEE Transactions on Neural Networks,1993,4(4):718-720.
  • 9ThiriaS,MejiaC,BadranF,etal.Multimodular architecture for remote sensing operations[C] // Moody J E,Hanson S J,Lippmann R P,eds.Advances in Neural Information Processing Systems4.San Mateo,CA:Morgan Kaufmann,1992:675-68.
  • 10Rifkin R,Klautau A.In defense of one-vs-all classification[J].The Journal of Machine Learning Research,2004,5:101-141.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部