期刊文献+

具复杂偏差变元的Rayleigh方程的周期解

Periodic Solution of a Kind of Rayleigh Equation with Complex Deviating Argument
下载PDF
导出
摘要 利用k-集压缩算子拓扑度抽象连续定理,研究了一类具复杂偏差变元的Rayleigh方程周期解的存在性,并获得了此类方程周期解存在的充分条件。本文的结果推广并改进了已有的结果。 The paper employs an abstract continuous theorem of k-set contractive operator to study the existence of periodic solution of a type Rayleigh equation with complex deviating argument. Sufficient conditions of the equation with periodic solution are obtained. Some known results with this equation have been extended and improved.
出处 《电力学报》 2006年第4期448-449,共2页 Journal of Electric Power
关键词 RAYLEIGH方程 周期解 K-集压缩算子 Rayleigh equation Periodic solution K-set contractive operator
  • 相关文献

参考文献2

二级参考文献11

  • 1刘锡平,贾梅,葛渭高.一类非自治迭代泛函微分方程[J].高校应用数学学报(A辑),1998,13(3):249-256. 被引量:11
  • 2黄先开,向子贵.具有时滞的Duffing型方程+g(x(t—τ))=p(t)的2π周期解[J].科学通报,1994,39(3):201-203. 被引量:90
  • 3Gaines R. E., Mawhin J. L., Coincidence degree and nonlinear differential equations, Berlin: Springer-Verlag,1977.
  • 4Liu F., Existence of periodic solutions to a class of second order nonlinear differential equations, Acta Math.Sinica, 1990, 33(2): 260-269 (in Chinese).
  • 5Liu F., On the existence of periodic solutions of Rayleigh equation, Aeta Math. Sinica, 1994, 87(5): 639-644(in Chinese).
  • 6Huang X. K, Xiang Z. G., On the existence of 2π-periodic solution for delay Duffing equation x"(t)+g(x(t-τ))=p(t), Chinese Science Bulletin, 1994, 39(3): 201-203 (in Chinese).
  • 7Ma S. W., Wang Z. C., Yu J. S., Coincidence degree and periodic solutions of Dufling equations, Nonlinear Analysis, TMA, 1998, 84: 443-460.
  • 8Lu S. P., Ge W. G., On the existence of periodic solutions of second order differential equations with deviating arguments, Acta. Math. Sinica, 2002, 45(4): 811-818 (in Chinese).
  • 9Lu S. P., Ge W. G., Periodic solutions for a kind of second order differential equations with multiple deviating arguments, Applied Mathematics and Computation, 2003, 146(1): 195-209.
  • 10Wang G. Q., A priori bounds for periodic solutions of a delay Rayleigh equation, Applied Mathematics Letters,1999, 12: 41-44.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部