期刊文献+

固有模态函数(IMF)积检测器——以低信噪比情况下超宽带雷达信号检测为例 被引量:1

An IMFs-Product Detector for the UWB Radar Signal with Low Signal-to-Noise Ratio
下载PDF
导出
摘要 首次提出了一种固有模态函数积检测器。首先通过经验模式分解(EMD)把带噪信号分解成有限个固有模态函数(IMF)。检测的基本思路是,对各个IMF分量的绝对值作逐点乘积,用于抑制噪声并凸现信号,最后进行滤波和判决。本文以UWB信号为例,数据源于UWB雷达实验系统。在低信噪比(SNR),UWB脉冲与噪声波形相似,且噪声概率密度函数(PDF)未知情况下,进行实验。结果表明,当峰峰信噪比低于5dB时,该检测器性能优于Teager能量算子(TEO)。 We develop an intrinsic mode functions(IMFs) product detector for UWB radar. The UWB noisy data are decomposed into finite number of intrinsic mode functions(IMFs) by empirical mode decomposition(EMD) method. For enhancing signal peaks and suppressing noise, the detection method is based on the IMFs point-wise product. Filtering and judging are implemented in the last. The proposed method was tested in the case of low signal-to-noise ratio(SNR), the large similarity between target signal and background noise, and absence knowledge of noise's probability density function(PDF). The test data comes from the UWB radar experimental system. While peak-to-peak SNR is under 5dB, we compared the performance of the proposed detector with that of Teager energy operator( TEO), and showed the superiority of the proposed detector over TEO.
出处 《宇航学报》 EI CAS CSCD 北大核心 2006年第B12期75-78,共4页 Journal of Astronautics
关键词 经验模式分解 固有模态函数 TEAGER能量算子 超宽带雷达 Empirical mode decomposition Intrinsic mode functions product Teager energy operator Ultra wide bandwidth radar
  • 相关文献

参考文献18

  • 1Huang N E, Shen Z, Long S R, Wu M L, Shih H H, Zheng Q, Yen N C, Tung C C C and Liu H H. The empirical mode decomposition and hilbert spectrum for nonlinear and nonstationary time series analysis, Proc. R.Soc. London A,1998,454:903-995.
  • 2Patrick Flandrin, Gabriel Rilling and Paulo Goncalves. Empirical mode decomposition as a filter bank, IEEE Signal Processing Letters, 2004,11(2):112- 114.
  • 3Andrade A O, Kyberd P J and Taffler S D. A novel spectral representation of electromyographic signals[C]//Proceedings of the 25^th Annual International Conference of the IEEE EMBS, Cacun, Mexico, Sept, 2003.
  • 4Per Gloersen, Norden Huang. Comparison of interannual intrinsic modes in hemispheric sea ice covers and other geophysical parameters, IEEE Trans. Geoscience and Remote Sensing, 2003,41 ( 5 ) :1062- 1074.
  • 5Kay S M. Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory. Englewood Cliffs,NJ:Prentice-Hall,1998.
  • 6Manolakis D G, Ingle V K, Kogon S M. Statistical and adaptive signal processing, McGraw-Hill Companies, Inc,2003.
  • 7Frisch M and Messer H. The use of wavelet transform in the detection of an unknown transient singal[J]. IEEE Trans. Information Theory, 1992,38(2) :892 - 897.
  • 8KIM K H and KIM S J. Neural spike sorting under nearly 0-dB signalto-noise ratio using nonlinear energy operator and artificial neural-network classifier[ J ]. IEEE. Trans. Biomed. Eng, 2000, 47 : 1406 - 1411.
  • 9KIM K H and KIM S J. A wavelet-based method for action potential detection from extracelluar neural signal recording with low signal-to-noise ratio[ J ]. IEEE. Trans. Biomed. Eng, 2003,50 : 999 - 1011.
  • 10Maragos P, Kaiser J F and Quatieri T F. On amplitude and frequency demodulation using energy operators[J]. IEEE Trans. Signal Processing, 1993,41 : 1532 - 1550.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部