期刊文献+

一类四阶有理型差分方程的全局稳定性和环长规律

Rules of Cycle Length and Global Behavior of Fourth-Order Rational Difference Equation
下载PDF
导出
摘要 考虑一类四阶有理型差分方程,清楚地描述了其解的环长规律,即一个周期的环长规律为:3+,4-,1+,1-,1+,2-,2+,1-;并得到方程的正平衡点是全局渐近稳定的. In this paper a fourth - order rational difference equation is considered. The rule of the cycle length for the solutions of the equation is clearly described. Namely, the rule is 3^+ ,4^- ,1^+ ,1^- ,1 ^+ ,2^- ,2^+ ,1 ^- in a period. And, the global asymptotical stability of positive equilibrium point of the equation is obtained.
出处 《南华大学学报(自然科学版)》 2006年第4期1-4,76,共5页 Journal of University of South China:Science and Technology
基金 湖南省教育厅优秀青年资助项目(04B056) 南华大学重点资助项目(06Z02)
关键词 有理差分方程 半环 环长 全局渐近稳定 rational difference equation semicycle cycle length global asymptotic stability
  • 相关文献

参考文献1

二级参考文献10

  • 1De Vault R, Ladas G, Schultz S W. On the recursive sequence xn+1=(A/xpn)+B/(xqn-1)[A].In: Proceedings of the Second International Conference on Difference Equations[C]. Basel: Gorden and Breach Science Publishers,1996.
  • 2Philos Ch G, Purnaras I K, Sficas Y G. Global attractivity in a nonlinear difference equation[J]. Appl Math Comput,1994,62:249-258.
  • 3Ladas G. Open problems and conjectures[A]. In: Proceedings of the First International Conference on Difference Equations[C]. Basel: Gorden and Breach Science Publishers,1995,337-349.
  • 4Arciero M, Ladas G, Schultz S W. Some open problems about the solutions of the delay difference equation xn+1=A/(x2n)+1/(xpn-k)[J]. Proceedings of the Georgian Academy of Science Mathematics, 1993,1:257-262.
  • 5Brand L. A sequence defined by a difference equation[J]. Amer Math Monthly,1995,62:489-492.
  • 6De Vault R, Kocic V L, Ladas G. Global stability of a recursive sequence[J]. Dynamics Systems and Applications,1992,1:13-21.
  • 7Ladas G. Open problems and conjectures[A]. In: Proceedings of the First International Conference on Differnce Equations[C].Basel:Gorden and Breach Science Publishers,1995,337-349.
  • 8Kocic V L, Ladas G. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications[M]. Dordrect: Kluwer Academic Publishers,1993.
  • 9李先义.一类非线性时滞差分方程解的若干性质[J].应用数学,2000,13(1):27-30. 被引量:6
  • 10李先义,金银来.对G.Ladas的一个开问题的解答[J].数学杂志,2002,22(1):50-52. 被引量:3

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部