期刊文献+

基于ARMA模型的往复式压缩机状态预测 被引量:2

Study of Reciprocating Compressor Condition Forecasting Based on ARMA Model
下载PDF
导出
摘要 论述了ARMA模型的构造及运用模型解决问题的方法,介绍了模型的建立过程,并将其应用到往复压缩机状态预测体系中,得到了预测值与实际值的拟合图。结果表明,应用ARMA模型法预测往复式压缩机的运行状态是可信的和准确的,预测机械故障是可行的。 Structure and method settling question ot ARMA model are studied, procedure of ARMA model is discussed. According to material item, ARMA model is applied to analyze trend forecasting of reciprocating compressor running condition. The model is testified by experimental data, trend figure of forecasting numerical value and fact value is gained,and results proves to be reliable and accuracy,revealing feasibility of forecasting fault by ARMA model.
出处 《石油化工设备》 CAS 2007年第1期1-4,共4页 Petro-Chemical Equipment
基金 国家自然科学基金资助项目(50105015 50375103) 北京市科技新星计划资助项目(2003B33) 北京市教育委员会共建项目建设计划(XK114140478) 教育部霍英东青年教师教育基金(No.91051)
关键词 压缩机 状态 预测 ARMA模型 compressor trend forecasting autoregressive, moving average model
  • 相关文献

参考文献5

二级参考文献29

  • 1陈波,胡念苏,周宇阳,申,赵瑜.汽轮机组监测诊断系统中虚拟传感器的数学模型[J].中国电机工程学报,2004,24(7):253-256. 被引量:24
  • 2张安华.灰色预测模型及其在故障预测中的应用[J].设备管理与维修,1994(9):21-22. 被引量:5
  • 3程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1999.207-217.
  • 4卢学强,梁雪慧,卢学军.神经网络方法及其在非线性时间序列预测中的应用[J].系统工程理论与实践,1997,17(6):97-99. 被引量:56
  • 5Ruy L Milidiu,Ricardo J Machado,Raul RRenteria.Time-series forecasting through wavelets transformation and a mixture of expert models[J].Neurocomputing,1999,28:145-156.
  • 6Hanh H Nguyen,Christine W Chart.’Multiple neural network for a long term time series forecast[J].Neural Comput&Applic,2004,13:90-98.
  • 7E Eryurek,B R Upadhyaya.Sensor validation for power plants using adaptive backpropagation neural network[J].IEEE TRANSACTIONS ON NUCLEAR SCIENCE,1990,37:1040-1047.
  • 8Man Gyun Na,Young Rok Sim,Kyung Ho Park.Sensor Monitoring Using a Fuzzy Neural Network With all Automatic Structure Constructor[J].IEEE TRANSACTIONS ON NUCLEAR SCIENCE,2003,50(2):241-250.
  • 9Brandon Rasmussen,J Wesley Hines,Robert E Uhrig.A Novel Approach to Process Modeling for Instrumem Surveillance and Calibration Verification[J].Nuclear Plant Instrumentation,Control,and Human-Machine Interface Technologies 2003,143(2):217-226.
  • 10Dong Dong,Thomas J McAvoy.Emission Monitoring Using Multivariate Soft Sensors[A].Proceedings of the American Control Conference[C],1995.

共引文献42

同被引文献18

  • 1陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 2JURICEK B C, SEBORG D E, LARIMORE W E. Predictive monitoring for abnormal situation management [J]. Journal of Process Control, 2001,11 (2): 111-128.
  • 3陆宁云.间歇工业过程的统计建模、在线监测和质量预测[D].沈阳:东北大学,2004:7-20.
  • 4JACKSON J E. A user's guide to principal components[M]. New York: Wiley, 1991.
  • 5TUGNAIT J K. Parameter identifiability of multichannel ARMAmodels of linear non gaussian signals via cumulant matching[J]. J. IEEE JNL,1995,43 (12): 3067-3069.
  • 6BOX G E, JENKINS G M. Time series analysis forecasting and control [M], San Francisco: Holden-Day, 1970.
  • 7AI-BADI A,ELLITHY K,AI-ALAWI S. Prediciton of voltages on mitigated pipelines paralleling electric transmission lines using ANN[J].International Journal of Computers and Applications,2010,(01):15-22.
  • 8BOX G E,JENKINS G M. Time series analysis forecasting and control[M].San Francisco:Holden-Day,1970.
  • 9MARTIN E B,MORRIS A J. Non-parametric confidence bounds for process performance monitoring charts[J].{H}Journal of Process Control,1996,(06):349-358.
  • 10胡学发,王姝,王福利,何大阔.基于MICA-FDA的水压试验机故障诊断方法研究[J].仪器仪表学报,2008,29(8):1593-1597. 被引量:4

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部