期刊文献+

三角网格细分模式的统一框架 被引量:1

A Unified Framework for Triangular Subdivision Schemes
下载PDF
导出
摘要 通常情况下,三角网格细分模式由面分裂的初始模式和点分裂的对偶模式构成。为两种不同的模式提出了一个统一框架,定义了复合细分操作,并对当前流行的几种模式进行了分析。在此框架基础上,将三角网格细分模式进行扩展,对网格细分算法的研究和发展奠定新的基础。 Generally, triangular subdivision schemes consist of the primal schemes which split faces and the dual schemes which split vertices. This paper pro.poses a unified framework for the two distinct schemes, defines the composite subdivision operation, and also analyzes some popular schemes. Based on the framework, the kinds of the triangular subdivision schemes are extended, wlichfinds a foundation for the researches and developments of the triangular subdivision schemes.
出处 《济南大学学报(自然科学版)》 CAS 2007年第2期121-123,共3页 Journal of University of Jinan(Science and Technology)
关键词 网格细分 初始模式 对偶模式 统一框架 mesh subdivision primal scheme dual scheme unified framework composite subdivision operation
  • 相关文献

参考文献10

  • 1Denis Zorin,Peter Schroder.Subdivision for modeling and Animation[C].Giggraph 99,course Notes,1999.
  • 2Charles Loop.Smooth subdivision surfaces based on triangles[D].Department of Mathematics,University of Utah,1987.
  • 3Kibbekt L.Subdivision[C].Computer Graphics Proceedings,Annual Conference Series,2000.
  • 4Akleman E,Srinivasan V.Honeycomb subdivision[C].17th International Symposium on Computer and Information Sciences,2002.
  • 5Johan Claes,Koen Beets.A Corner-cutting Scheme for Hexagonal Subdivision Surfaces[C].International Conference on Shape Modeling and Applications,2002.
  • 6张宏鑫,王国瑾.蜂窝细分(英文)[J].软件学报,2002,13(7):1199-1208. 被引量:10
  • 7Touma C,Gotsman C.Triangle mesh Compression[C].Proceedings of the 24th Conference on Graphics Interface,San Francisco,1998:26-34.
  • 8Lundmark A,Wadstromer N,LI H.Hierarchical subsampling giving fractal regions[J].IEEE Trans on Image Proc,2001,10(1):167-173.
  • 9Oswald P,Schroeder P.Composite primal/dual subdivision schemes[J].CAGD,2003,20(3):135-164.
  • 10Oswald P.Designing composite triangular subdivision schemes[J].CAGD,2005(22):659-679.

二级参考文献10

  • 1[1]Catmull, E.,Clark, J. Recursively generated B-Spline surfaces on arbitrary topological meshes. Computer Aided Design, 1978,10(6):350~355.
  • 2[2]Doo, D., Sabin, M. Behavior of recursive division surfaces near extraordinary points. Computer Aided Design, 1978,10(6): 356~360.
  • 3[3]Loop, C.T. Smooth subdivision surfaces based on triangle . Department of Mathematics, University of Utah, 1987.
  • 4[4]Dyn, N., Levin, D., Gregory, J. A. A butterfly subdivision scheme for surface interpolation with tension control. ACM Transactions on Graphics, 1999,9(2):160~169.
  • 5[5]Kobbelt, L. Interpolatory subdivision on open quadrilateral nets with arbitrary topology. In: Proceedings of the Eurographics'96 (1996). Computer Graphics Forum, 1996,15(3):409~420.
  • 6[6]Kobbelt, L.-Subdivision. In: Proceedings of the Siggraph'2000 (2000). Computer Graphics, 2000. 103~112.
  • 7[7]Ball, A., Storry, D. Conditions for tangent plane continuity over recursively generated B-Spline surfaces. ACM Transactions on Graphics, 1988,7(2):83~102.
  • 8[8]Halstead, M., Kass, M., DeRose, T. Efficient, fair interpolation using catmull-clark surfaces. Computer Graphics, 1993,27(3): 35~44.
  • 9[9]Reif, U. A unified approach to subdivision algorithms near extraordinary vertices. Computer Aided Geometric Design, 1995,12(2): 153~174.
  • 10[10]Zorin, D. Subdivision for modeling and animation. Siggraph 2000 course notes, 2000. http://www.multires.caltech.edu.

共引文献9

同被引文献14

  • 1Alliez P,Gotsman C.Recent advances in compression of 3D meshes[C].Advances in Multiresolution for Geometric Modelling.Springer,2005:3 -26.
  • 2Peng J.Technologies for 3D mesh compression:A survey[J].Journal of Visual Communication and Image Representation,2005,16:688-733.
  • 3Rossignac J.Edgebreaker:Connectivity compression for triangle meshes[J].IEEE Transactions on Visualization and Computer Graphics,1999,5(1):47-61.
  • 4King D,Rossignac J.Guaranteed 3.67v bit encoding of planar triangle graphs[C].11th Canadian Conference on Computational Geometry,1999:146-149.
  • 5Gumhold S.New bounds on the encoding of planar triangulations[R].Germany:Technical Report WSI-2000-1,Wilhelm-Schikard-Institut für Informatik,University of Tübingen,2000.
  • 6Rossignac J,Szymczak A.Wrap and zip decompression of the connectivity of triangle meshes compressed with edgebreaker[J].Comput Geom,1999,14(1-3):119-135.
  • 7Isenburg M,Snoeyink J.Spirale reversi:Reverse decoding of the edgebreaker encoding[C].12th Canadian Conference on Computational Geometry,2000:247-256.
  • 8Szymczak A,King D,Rossignac J.An edgebreaker-based efficient compression scheme for regular meshes[C].Proc of 12th Canadian Conference on Computational Geometry,2000:257-264.
  • 9Coors V,Rossignac J.Delphi:Geometry-based connectivity pridiction in triangle mesh compression[J].The Visual Computer,2004,20(8-9):507-520.
  • 10Lewiner T,Craizer M,Hélio Lopes,et al.Gencode:Geometrydriven compression in arbitrary dimension and co-dimension[C].Proceedings of Sibgrapi,IEEE,2005:249-256.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部