期刊文献+

基于向量空间的垃圾邮件过滤方法研究

Research for spam filtering based on the vector space model
下载PDF
导出
摘要 针对垃圾邮件过滤中基于邮件内容过滤的需求,采用向量空间模型在真实垃圾邮件组成的示例文档集的基础上提取向量模型。当接收到新邮件,根据向量模型和相关加权方法提取邮件向量,利用余弦函数计算两向量相似度.实现对垃圾邮件的过滤。 With the necessary for spam filtering based on content, a Vector Space Model is used to retrieve a vector mode according a real documents set of spam. When receive a new E-mail, referencing vector mode and related weighted method retrieves the vector space of the e-mail, At last use the cosine function computing the similar degree, and implement the spam filtering.
作者 李东艳
出处 《仪器仪表用户》 2007年第1期97-98,共2页 Instrumentation
关键词 内容过滤 向量空间模型 相似度 filtering based on content Vector Space Model similar degree
  • 相关文献

参考文献4

二级参考文献35

  • 1徐激,龚俭.垃圾邮件的综合过滤方法[J].计算机科学,2005,32(2):69-72. 被引量:11
  • 2Rainbow[ EB/OL]. http: //www-2, cs. cmu. edu/~mccallum/bow/src/bow-20020213, tar. gz, 2002.
  • 3lingspam_public[ EB/OL]. hap://www, aueb. gr/usera/ion/data/,2003.
  • 4MICHALAS A. A Bayesian Approach to Filtering E-mail and Search Engine Spare[ EB/OL]. Report for the MSci Degree in Computer Science at University College London, http://www, spamnemesis, org/report, pdf, 2004.
  • 5GRAHAM P. Stopping Spam[ EB/OL]. http://www, paulgraham.com/stopspam, html, 2005.
  • 6SAHAMI M, et al. A Bayeslan Approach to Filtering E-Mail[ C].Learning for Text Categorization Workshop, http:///robotics, stanford. edu/users/sahami/papers - dir/. spare, ps, 1998.
  • 7RENNIE JDM. ifile: An Application of Machine Learning to EMail Filtering[ EB/OL]. http: //www. cs. cmu. edu/~jr6b,/papers/ifi-Ie98. ps, 1998.
  • 8G Hulten, J Goodman.Tutorial on Junk Mail Filtering[R].
  • 9W Cohen. Fast Effective Rule Induction,in Machine Learning[C].Proceedings of the 12th International Conference, Lake Taho, California, Mongan Kanfmann,1995.115-123.
  • 10X Carreras, L Marquez. Boosting Trees for Anti-Spam E-mail Filtering[C]. Proceedings of Euro Conference Recent Advances in NLP (RANLP-2001), 2001. 58-64.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部