期刊文献+

Recent progress of CERN 39-cryogenic tracking detectors collaboration

Recent progress of CERN 39-cryogenic tracking detectors collaboration
下载PDF
导出
摘要 Significant progress was made by the CERN RD39 collaboration in the development of super radiation-hard cryogenic silicon detectors for applications in experiments at LHC, in particular after its future luminosity upgrade. The detailed modeling shows that the electric field in irradiated silicon detectors can easily be manipulated by the filling state of two deep defect levels at cryogenic temperature. Advanced radiation hard detectors using charge or current injection and the current injected detectors(CID) were developed by RD39. The results show that CID detectors can be operated at the temperature of 100?200 K with much improved charge collection efficiency(CCE) as compared with RT operation. Future studies are developing ultra-hard cryogenic silicon detectors for the LHC upgrade, where the radiation hardness is required up to 1016 neq/cm2, at which trapping will limit the charge collection depth to the range of 20 to 50 μm regardless of the depletion depth. The key of our approach is to use freeze-out trapping to affect CCE. Significant progress was made by the CERN RD39 collaboration in the development of super radiation-hard cryogenic silicon detectors for applications in experiments at LHC, in particular after its future luminosity upgrade. The detailed modeling shows that the electric field in irradiated silicon detectors can easily be manipulated by the filling state of two deep defect levels at cryogenic temperature. Advanced radiation hard detectors using charge or current injection and the current injected detectors(CID) were developed by RD39. The results show that CID detectors can be operated at the temperature of 100-200 K with much improved charge collection efficiency(CCE) as compared with RT operation. Future studies are developing ultra-hard cryogenic silicon detectors for the LHC upgrade, where the radiation hardness is required up to 1016 neq/cm^2, at which trapping will limit the charge collection depth to the range of 20 to 50 μm regardless of the depletion depth. The key of our approach is to use freeze-out trapping to affect CCE.
出处 《中国有色金属学会会刊:英文版》 CSCD 2006年第B01期137-140,共4页 Transactions of Nonferrous Metals Society of China
关键词 欧洲原子能研究机构 CERN39协作组 低温跟踪 俘获 粒子探测器 研究进展 cryogenic, silicon, particle detector, trapping
  • 相关文献

参考文献9

  • 1GIANOTTI F, et al. hep-ph/0204087, 2002.
  • 2HARKONEN J, et al. Recent results from the CERN RD39 collaboration on super-radiation hard cryogenic silicon detectors for LHC and LHC upgrade [J]. Nuclear Instruments and Methods in Physics Research A, 2004, A535 : 384-388.
  • 3EREMIN V, LI Z. Determination of the fermi-level position for neutron irradiated high resistivity silicon detectors and materials using the transient charge technique (TChT) [J]. IEEE Transactions on Nuclear Science, 1994, 41(6): 1907-1912.
  • 4EREMIN V, LI Z, ILJASHENKO I. Trapping induced Neff and electrical field transformation at different temperatures in neutron irradiated high resistivity silicon detectors [J]. Nuclear Instruments and Methods in Physics Research A, 1995, 360: 458-462.
  • 5EREMIN V, et al. Development of transient current and charge techniques for the measurement of effective net concentration of ionized charges (Near) in the space charge region of p-n junction detectors [J]. Nuclear Instruments and Methods in Physics Research A, 1996,372:388-398.
  • 6EREMIN V, et al. Current injected detectors(CID)-a new approach for detector operation in very high radiation environrn, ent [J]. Nuclear Science Symposium Conference Record, 2004, 3: 2003-2006.
  • 7LAMPERT M, MARK P. Current Injection in Solids [M]. NY, London: Academic Press, 1970.
  • 8HARKONEN J, et al. Processing of microstrip detectors on czochralski grown high resistivity silicon substrates [J]. Nuclear Instnments and Methods in Physics Research A, 2003, 514: 173-179.
  • 9BORER K, et al. Charge collection efficiency of irradiated silicon detectors operated at cryogenic temperatures [J]. Nuclear Instruments and Methods in Physics Research A, 2000, 440: 5.
  • 1P.LUUKKA.Recent progress of CERN RD50 Collaboration[J].中国有色金属学会会刊:英文版,2006,16(B01):133-136. 被引量:1
  • 2LIU KeXin.Recent progress in techniques utilized for particle accelerator[J].Science China(Physics,Mechanics & Astronomy),2012,55(12):2326-2330. 被引量:1
  • 3K.A.Olive,K.Agashe,C.Amsler,M.Antonelli,J.-F.Arguin,D.M.Asner,H.Baer,H.R.Band,R.M.Barnett,T.Basaglia,C.W.Bauer,J.J.Beatty,V.I.Belousov,J.Beringer,G.Bernardi,S.Bethke,H.Bichsel,O.Biebe,E.Blucher,S.Blusk,G.Brooijmans,O.Buchmueller,V.Burkert,M.A.Bychkov,R.N.Cahn,M.Carena,A.Ceccucci,A.Cerr,D.Chakraborty,M.-C.Chen,R.S.Chivukula,K.Copic,G.Cowan,O.Dahl,G.D'Ambrosio,T.Damour,D.de Florian,A.de Gouvea,T.DeGrand,P.de Jong,G.Dissertor,B.A.Dobrescu,M.Doser,M.Drees,H.K.Dreiner,D.A.Edwards,S.Eidelman,J.Erler,V.V.Ezhela,W.Fetscher,B.D.Fields,B.Foster,A.Freitas,T.K.Gaisser,H.Gallagher,L.Garren,H.-J.Gerber,G.Gerbier,T.Gershon,T.Gherghetta,S.Golwala,M.Goodman,C.Grab,A.V.Gritsan,C.Grojean,D.E.Groom,M.Grnewald,A.Gurtu,T.Gutsche,H.E.Haber,K.Hagiwara,C.Hanhart,S.Hashimoto,Y.Hayato,K.G.Hayes,M.Heffner,B.Heltsley,J.J.Hernandez-Rey,K.Hikasa,A.Hocker,J.Holder,A.Holtkamp,J.Huston,J.D.Jackson,K.F.Johnson,T.Junk,M.Kado,D.Karlen,U.F.Katz,S.R.Klein,E.Klempt,R.V.Kowalewski,F.Krauss,M.Kreps,B.Krusche,Yu.V.Kuyanov,Y.Kwon,O.Lahav,J.Laiho,P.Langacker,A.Liddle,Z.Ligeti,C.-J.Lin,T.M.Liss,L.Littenberg,K.S.Lugovsky,S.B.Lugovsky,F.Maltoni,T.Mannel,A.V.Manohar,W.J.Marciano,A.D.Martin,A.Masoni,J.Matthews,D.Milstead,P.Molaro,K.Monig,F.Moortgat,M.J.Mortonson,H.Murayama,K.Nakamura,M.Narain,P.Nason,S.Navas,M.Neubert,P.Nevski,Y.Nir,L.Pape,J.Parsons,C.Patrignani,J.A.Peacock,M.Pennington,S.T.Petcov,Kavli IPMU,A.Piepke,A.Pomarol,A.Quadt,S.Raby,J.Rademacker,G.Raffel,B.N.Ratcliff,P.Richardson,A.Ringwald,S.Roesler,S.Rolli,A.Romaniouk,L.J.Rosenberg,J,L.Rosner,G.Rybka,C.T.Sachrajda,Y.Sakai,G.P.Salam,S.Sarkar,F.Sauli,O.Schneider,K.Scholberg,D.Scott,V.Sharma,S.R.Sharpe,M.Silari,T.Sjostrand,P.Skands,J.G.Smith,G.F.Smoot,S.Spanier,H.Spieler,C.Spiering,A.Stahl,T.Stanev,S.L.Stone,T.Sumiyoshi,M.J.Syphers,F.Takahashi,M.Tanabashi,J.Terning,L.Tiator,M.Titov,N.P.Tkachenko,N.A.Tornqvist,D.Tovey,G.Valencia,G.Venanzoni,M.G.Vincter,P.Vogel,A.Vogt,S.P.Wakely,W.Walkowiak,C.W.Walter,D.R.Ward,G.Weiglein,D.H.Weinberg,E.J.Weinberg,M.White,L.R.Wiencke,C.G.Wohl,L.Wolfenstein,J.Womersley,C.L.Woody,R.L.Workman,A.Yamamoto,W.-M.Yao,G.P.Zeller,O.V.Zenin,J.Zhang,R.-Y.Zhu,F.Zimmermann,P.A.Zyla,G.Harper,V.S.Lugovsky,P.Schaffner.RADIOACTIVITY AND RADIATION PROTECTION[J].Chinese Physics C,2014,38(9):460-465.
  • 4爱民.PS四十年长盛不衰[J].高能物理参考资料,1996(5):19-22.
  • 5王聚文.Some aspects in accelerator structure studies at SLAC[J].Chinese Physics C,2009,33(S2):96-101.
  • 6Sun Liangting Li Jinyu Ma Baohua Wang Hui Wang Pingzhi Zhang Xuezhen Feng Yucheng Zhang Zimin Li Xixia Shang Yong Liu Huiping Zhao Hongwei Ma Xinwen Song Mingtao Zhan Wenlong.Recent Progress of LAPECR2[J].近代物理研究所和兰州重离子加速器实验室年报:英文版,2006(1):148-148.
  • 7李笑梅,胡守扬,蹇司玉,周静,李兴隆,梁浩,周书华.GEM探测器X射线成像研究[J].中国原子能科学研究院年报,2015(1).
  • 8Kazuhisa Nakajima.Recent Progress on Laser Plasma Accelerators and Applications for Compact High-Quality Particle Beam and Radiation Sources[J].材料科学与工程(中英文A版),2011,1(2X):293-300.
  • 9PAN Gao-feng,ZHANG Su-ping,XING Jian-sheng,LIU Geng-guo.The Design of Cryogenics Transfer Line for CYCIAE-100[J].Annual Report of China Institute of Atomic Energy,2012(1):43-44.
  • 10郝建奎,赵夔.Recent progress on RF superconducting cavities[J].Chinese Physics C,2009,33(10):930-934.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部