摘要
The piezoelectric ceramics xPb(Mn1/3Sb2/3)O3-(1-x)Pb(Zr1/2Ti1/2)O3 (abbreviated as PMS-PZT) were synthesized by traditional ceramics process. The effect of sintering temperature and the amount of Pb(Mn1/3Sb2/3)O3 (abbreviated as PMS) on phase structure, microstructure, piezoelectric and dielectric properties of PMS-PZT ceramics was investigated. The results show that the pure perovskite phase is in all ceramics specimens, the phase structure of PMS-PZT ceramics changes from tetragonal phase to single rhombohedral phase with the increasing amount of PMS. The dielectric constant εr, Curie temperature TC, electromechanical coupling factor kp and piezoelectric constant d33 decrease, whereas the mechanical quality factor Qm and dielectric loss tanδ increase with the increasing amount of PMS in system. The optimum sintering temperature is 1 200?1 250 ℃. It is concluded that the PMS-PZT (x=0.07) ceramics sintered at 1 250 ℃ is suitable for high-power piezoelectric transformer. These properties include εr= 674.8, tanδ=0.005 25, kp=0.658, Qm=1 520, d33=230 pC/N, Tc=275 ℃.
The piezoelectric ceramics xPb(Mn1/3Sb2/3)O3-(1-x)Pb(Zr1/2Ti1/2)O3 (abbreviated as PMS-PZT) were synthesized by traditional ceramics process. The effect of sintering temperature and the amount of Pb(Mn1/3Sb2/3)O3 (abbreviated as PMS) on phase structure, microstructure, piezoelectric and dielectric properties of PMS-PZT ceramics was investigated. The results show that the pure perovskite phase is in all ceramics specimens, the phase structure of PMS-PZT ceramics changes from tetragonal phase to single rhombohedral phase with the increasing amount of PMS. The dielectric constant εr, Curie temperature Tc, electromechanical coupling factor kp and piezoelectric constant d33 decrease, whereas the mechanical quality factor Qm and dielectric loss tanδ increase with the increasing amount of PMS in system. The optimum sintering temperature is 1 200-1 250 ℃. It is concluded that the PMS-PZT (x=0.07) ceramics sintered at 1 250 ℃ is suitable for high-power piezoelectric transformer. These properties include εr=674.8, tanδ =0.005 25, kp=0.658, Qm= 1 520, d33=230 pC/N, Tc=275 ℃.
出处
《中国有色金属学会会刊:英文版》
CSCD
2006年第B01期165-169,共5页
Transactions of Nonferrous Metals Society of China
基金
Project (10474077) supported by the National Natural Science Foundation of China