摘要
ZnSe/SiO2 composite thin films was prepared by sol-gel method. XRD results indicate the phase structure of ZnSe particles embedded in ZnSe/SiO2 composite thin films is sphalerite (cubic ZnS). Spectroscopic ellipsometers were used to investigated the dependences of ellipsometric angle with wavelength of ZnSe/SiO2 composite thin films. The optical constant, thickness, porosity and the concentration of ZnSe of ZnSe/SiO2 thin composite films were fitted according to Maxwell-Garnett effective medium theory. The thickness of ZnSe/SiO2 composite thin thin films was also measured through surface profile. The photoluminescence properties of ZnSe/SiO2 thin composite thin films was investigated through fluorescence spectrometer. The photoluminescence results show that the emission peak at 487 nm (2.5 eV) is excited at 395 nm corresponds to the band-to-band emission of sphalerite ZnSe crystal(2.58 eV). The strength free exciton emission and other emission peaks correlating to ZnSe lattice defect were also observed.
ZnSe/SiO2 composite thin films was prepared by sol-gel method. XRD results indicate the phase structure of ZnSe particles embedded in ZnSe/SiO2 composite thin films is sphalerite (cubic ZnS). Spectroscopic ellipsometers were used to investigated the dependences of ellipsometric angle with wavelength of ZnSe/SiO2 composite thin films. The optical constant, thickness, porosity and the concentration of ZnSe of ZnSe/SiO2 thin composite films were fitted according to Maxwell-Garnett effective medium theory. The thickness of ZnSe/SiO2 composite thin thin films was also measured through surface profile. The photoluminescence properties of ZnSe/SiO2 thin composite thin films was investigated through fluorescence spectrometer. The photoluminescence results show that the emission peak at 487 nm (2.5 eV) is excited at 395 nm corresponds to the band-to-band emission of sphalerite ZnSe crystal(2.58 eV). The strength free exciton emission and other emission peaks correlating to ZnSe lattice defect were also observed.
出处
《中国有色金属学会会刊:英文版》
CSCD
2006年第B01期266-269,共4页
Transactions of Nonferrous Metals Society of China
基金
Project (2002CB613305) supported by the National Basic Research Program
project supported by the International Cooperation Research Project of Chinese-Israel of Ministry Education of China