期刊文献+

头部组织三维核磁共振电阻抗成像算法的仿真研究 被引量:7

A RECONSTRUCTION ALGORITHM FOR HEAD 3D MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY:SIMULATION STUDY
下载PDF
导出
摘要 文章给出了一种基于核磁共振技术的三维阻抗成像(电导率分布)重构算法,并将该方法应用于人体头部组织电导率分布重构上。该代数重构方法是利用高分辨率的核磁共振成像系统对成像物体进行三维构建和不同组织的边界区分,根据核磁共振系统中测量得到的磁感应强度Bz和By分量并结合有限元数值计算得到的电流密度分布J组成非线性矩阵,通过迭代求解此非线性矩阵,来解决三维电导率分布的重构问题。在三层球头模型(包括头皮、颅骨和大脑)上分别进行的仿真实验结果表明,该算法具有较强的抗噪声能力和较好的收敛性,重构的头部电导率分布图像具有较高的精确性。 In the paper, an algebraic reconstruction algorithm based on magnetic resonance electrical impedance tomography was presented for 3-dimensional (3D) electrical impedance tomography, especially to image the 3D continuous impedance distribution of the head tissues. In this method, the MRI system with high resolution was used to set up the 3D model of the object and to identify the boundary of different tissues. Then a non-linear matrix was composed of the measured magnetic flux density Bx and By combined with the current density J gained from the numerical computation by the finite element method. The solution of the non-linear matrix, which was solved iteratively, wass the reconstruction electrical impedance tomography. Numerical simulations were performed on a concentric three-sphere head model (scalp-skull-brain model). The results show that the 3D continuous conductivity reconstruction method has higher accuracy, fast convergence ability and better robustness against noise.
出处 《生物物理学报》 CAS CSCD 北大核心 2006年第6期461-470,共10页 Acta Biophysica Sinica
基金 国家自然科学基金项目(50577055) 美国国家科学基金(BES-0411898) 美国国立卫生院基金(R01EB00178)~~
关键词 核磁共振电阻抗成像 电流密度成像 磁感应强度测量 电阻抗成像 Magnetic resonance electrical impedance tomography Current density imaging Magnetic flux density measurement Electrical impedance tomography
  • 相关文献

参考文献31

  • 1He B (ed). Neural Engineering. USA: Kluwer Academic Publishers, 2005.
  • 2Woo E J, Lee SY, Mtm CW. Impedance tomography using internal current density distribution measured by Nuclear Magnetic Resonance. SPIE, 1994,2299:377~385.
  • 3Birgal O, Eyüboglu BM, Ider YZ. Current constrainted voltage scaled reconstruction (CCSVR) algorithm for MR-EIT and its performance with different probing current patterns.Phys Med Biol, 2003,48:653~671.
  • 4Birgül O, Eyüboglu BM, Ider YZ. New technique for high resolution absolute conductivity imaging using magnetic resonance-electrical impedance tomography (MR-EIT). Proc of SPIE International Symposium on Medical Imaging, 2001,880~888.
  • 5Khang HS, Lee BI, Oh SH, Woo E J, Lee SY, Cho MH,Kwon O, Yoon JR, Seo JK. J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT):phantom experiments for static resistivity images. IEEE Trans Med Imaging, 2002,21:695-702.
  • 6Kwon O, Lee JY, Yoon JR. Equipotential line method for magnetic resonance electrical impedance tomography (MREIT). Inverse Problems, 2002,18:1089~1100.
  • 7Ozdemir MS, Eyüboglu BM, Ozbek O. Equipotential projection-based magnetic resonance electrical impedance tomography and experimental realization. Phys Med Biol,2004,49:4765~4783.
  • 8Seo JK, Yoon JR, Woo E J, Kwon O. Reconstruction of conductivity and current density imaging using only one component of magnetic field measurements. IEEE Trans Biomed Eng, 2003,50(9): 1121 ~ 1124.
  • 9Oh SH, Lee BI, Woo E J, Lee SY, Cho MH, Kwon O, Seo JK. Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography. Phys Med Biol, 2003,48:3101~3116.
  • 10Oh SH, Lee BI, Woo E J, Lee SY Kim TS, Kwon O, Seo JK. Electrical conductivity images of biological tissue phantom in MREIT. Physiol Meas, 2005,26:S279~S288.

同被引文献59

  • 1李颖,徐桂芝,饶利芸,何任杰,颜威利.微分进化算法在头部电阻抗成像中的应用[J].中国生物医学工程学报,2005,24(6):672-675. 被引量:11
  • 2Davalos RV, Otten DM, Mir LM, et al. Electrical impedance tomography for imaging tissue electroporation[J]. IEEE Trans Biomed Eng, 2004, 51(5): 761-767.
  • 3Zhang Xiao-tong, Yan Dan-dan, Zhu Shan-an, et al. Noninvasive imaging of Head-Brain conductivity profiles[J]. IEEE Eng Med Biol Mag, 2008, 27(5): 78-83.
  • 4Soleimani M, Lionheart WR. Absolute conductivity reconstruction in magnetic induction tomography using a nonlinear method [J]. IEEE Trans Med Imaging, 2006, 25(12): 1521-1530.
  • 5Xu Yuan, He Bin. Magnetoacoustic tomography with magnetic induction (MAT-MI)[J]. Phys Med Biol, 2005, 50(21): 5175-5187.
  • 6He Bin. Neural Engineering[ M ]. New York: Kluwer Academic Publishers, 2005.
  • 7Oh SH, Lee BI, Woo EJ, et al. Electrical conductivity images of biological tissue phantoms in MREIT[J]. Physiol Meas, 2005, 26(2): $279-288.
  • 8Park C, Kwon O, Woo E J, et al. Electrical conductivity imaging using gradient Bz decomposition algorithm in magnetic resonance electrical impedance tomography(MREIT)[J]. IEEE Trans Med Imaging, 2004, 23(3): 388-394.
  • 9Ider YZ, Onart S. Algebraic reconstruction for 3D magnetic resonance-electrical impedance tomography (MREIT) using one component of magnetic flux density[J]. Physiol Meas, 2004, 25(1): 281-294.
  • 10Gao Nuo, Zhu Shan-an, He Bin. Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement[J]. Phys Med Biol, 2005, 50(11): 2675-2687.

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部