摘要
Based on minimum energy principle for plastic forming, tearing and buckling failures mechanisms are explored and criteria for them are developed by theoretical analysis and experiment. Combined with finite element software developed forming limit and effects of process parameters on failures are investigated and proper parameters for stable forming are determined. The results show that: 1) The failures and forming limit are mainly determined by geometry and materials parameters of tube blank, fillet radius or half conical angle of die. For the process under fillet die, there exists a maximum fillet radius within which no tearing failure happens, and a maximum radius and a minimum radius range within which no buckling failure happens. For the process under conical die, there exists a maximum and minimum half conical angle range within which no tearing and buckling failures occur. 2) For both forming processes, the higher the value of material strain hardening exponent or the lower the value of relative thickness, the more impossible for tearing and buckling failures to occur, and the larger the ranges of fillet radius and half conical angle. The experiment results verify the reliability and practicability of this research.
Based on minimum energy principle for plastic forming, tearing and buckling failures mechanisms are explored and criteria for them are developed by theoretical analysis and experiment. Combined with finite element software developed forming limit and effects of process parameters on failures are investigated and proper parameters for stable forming are determined. The results show that: 1) The failures and forming limit are mainly determined by geometry and materials parameters of tube blank, fillet radius or half conical angle of die. For the process under fillet die, there exists a maximum fillet radius within which no tearing failure happens, and a maximum radius and a minimum radius range within which no buckling failure happens. For the process under conical die, there exists a maximum and minimum half conical angle range within which no tearing and buckling failures occur. 2) For both forming processes, the higher the value of material strain hardening exponent or the lower the value of relative thickness, the more impossible for tearing and buckling failures to occur, and the larger the ranges of fillet radius and half conical angle. The experiment results verify the reliability and practicability of this research.
出处
《中国有色金属学会会刊:英文版》
CSCD
2006年第B02期785-790,共6页
Transactions of Nonferrous Metals Society of China
关键词
管道
轴向压缩成型
断裂失效机制
成形极限
tube axial compressive forming
forming limit
tearing failure
buckling failure