摘要
The research was conducted to evaluate the effects of cellulose and polyester fibers on the properties of porous asphalt mixes, using the tests of draindown, abrasion, volumetric properties, rutting, and moisture damage. Images of scanning electron microscopy and X-ray computerized tomography were adopted to identify the microstructure of the fiber and inner stone skeleton of porous asphalt. The influence of rutting parameter (G*/sinδ) of asphalt modified by different fibers on the rutting resistance of the mixes was investigated. Based upon MOHR-COULOMB theory, the cohesion and the angle of internal friction of the mixes were derived from both indirect tension and unconfined compression strength. The experimental results indicate that fibers mainly stabilize asphalt binder and thicken asphalt film around aggregates. Furthermore, they result in the improved mechanical strength of porous asphalt mixes at high temperature slightly. From comparison analysis, cellulose fibers appear to perform better than polyester fibers in porous asphalt mixes.
The research was conducted to evaluate the effects of cellulose and polyester fibers on the properties of porous asphalt mixes, using the tests of draindown, abrasion, volumetric properties, rutting, and moisture damage. Images of scanning electron microscopy and X-ray computerized tomography were adopted to identify the microstructure of the fiber and inner stone skeleton of porous asphalt. The influence of rutting parameter (G*/sin δ) of asphalt modified by different fibers on the rutting resistance of the mixes was investigated. Based upon MOHR-COULOMB theory, the cohesion and the angle of internal friction of the mixes were derived from both indirect tension and unconfined compression strength. The experimental results indicate that fibers mainly stabilize asphalt binder and thicken asphalt film around aggregates. Furthermore, they result in the improved mechanical strength of porous asphalt mixes at high temperature slightly. From comparison analysis, cellulose fibers appear to perform better than polyester fibers in porous asphalt mixes.
出处
《中国有色金属学会会刊:英文版》
CSCD
2006年第B02期791-795,共5页
Transactions of Nonferrous Metals Society of China
基金
Project(2004ABB019) supported by Outstanding Youth Foundation of Hubei Province, China Project(NCET-05-0656) supported by Program for New Century Excellent Talents in University, China