期刊文献+

一种正交调制的混沌通信方案 被引量:3

A chaotic communication scheme with quadrature modulation
下载PDF
导出
摘要 基于施密特正交化的原理,在产生正交混沌载波的基础上,提出并实现了一种基于混沌的正交调制通信系统.仿真结果表明,对单用户和多用户通信,在有信道噪声和多径干扰的情况下,该系统比CSK和QCSK混沌通信系统都有较好的性能.此外,该系统结构简单,易于实现。 Based on the idea of the Schmidt orthogonalization and the orthogonal chaotic carriers being generated, a chaos-based quadrature modulation communication system is proposed and realized. The results by computer simulation indicate that under the environment of channel noise and multipath interference, for single-user and multiuser communications, the proposed system is superior to the CSK and QCSK systems. In addition, the system is simple and easy to implement.
出处 《量子电子学报》 CAS CSCD 北大核心 2007年第1期73-79,共7页 Chinese Journal of Quantum Electronics
基金 国家自然科学基金(60572025) 教育部基金("新世纪优秀人才"基金:NCET-04-0813 重点项目 105137) 广东省自然科学基金(个人项目:05006506 团队项目:04205783)资助
关键词 量子光学 混沌 正交调制 施密特正交化 误码率 多径干扰 quantumoptics chaos quadrature modulation Schmidt orthogonalization BER multipath interference
  • 相关文献

参考文献11

  • 1Pecora L M, Caroll T L. Synchronization in chaotic systems [J]. Phys. Rev. Lett., 1990, 64(8): 821-824.
  • 2Kennedy M P, Kolumban G, Kis G. Chaotic modulation for robust digital communications over multipath channels[J]. Int. J. of Bifurcation and Chaos, 2000, 10(4): 695-718.
  • 3Feng J C, Tse C K. Reconstruction of Chaotic Signals with Applications to Chaos-based Communications [M].Beijing: Tsinghua University Press, 2005.
  • 4张 涛,刘宗才,刘佩田,翟爱民,张晓炎.利用相移键控实现混沌通信[J].量子电子学报,2002,19(4):334-336. 被引量:5
  • 5Cao Zhigang, Qian Yasheng. Modern Communication Theory (现代通信原理) [M]. Beijing: Tsinghua University Press, 2002.
  • 6Galias Z, Maggio G M. Quadrature chaos shift keying: theory and performance analysis [J]. IEEE Trans. on CAS-Ⅱ, 2001, 48(12): 1510-1519.
  • 7Linear algebra editor group in Shanghai Jiaotong University. Engineering Mathematics-Linear Algebra (工程数学-线性代数) [M]. 2nd Ed. Beijing: People Education Press, 1983.
  • 8王世元,冯久超.基于混沌的通信系统的盲信道均衡[J].西南师范大学学报(自然科学版),2004,29(3):373-378. 被引量:9
  • 9Tam W M, Lau F C M, Tse C K, et al. Exact analytical bit-error-rates for multiple access chaos-based communication systems [J]. IEEE Trans. on CAS-Ⅱ, 2004, 51(9): 473-481.
  • 10Itoh M. Spread spectrum communication via chaos [J]. Int. J. of Bifurcation,and Chaos, 1999, 9(1): 155-213.

二级参考文献17

  • 1[1]Pecora L M, Carroll T L. Synchronizing in chaotic system [J]. Phys. Rev. Lett., 1990, 64(8): 821-824
  • 2[2]Oppenheim A V, Wornell G W, Isabelle S H et al. Singal processing in the context of chaotic single [C] ∥ Proc IEEE ICASSP IV. 1992. 117-120
  • 3[3]Kocarev L, Halle K S, Eckert K et al. Experimental demonstration of secure communication via chaotic synchronization [J]. Int. J. of Bifurcation and Chaos, 1992, 2(3): 709-713
  • 4[4]Dedieu H, Kennedy M P, Hasler M. Chaos shift keying: Modulation and demodulation of chaotic carrier using self-synchronizing Chua's ciruits [J]. IEEE Tans on CAS, 1993, Part II40:634-642
  • 5[5]Kocarev L, Halle K S, Eckert K et al. Experimental demostration of secure communications via chaotic synchronization [J]. Int. J. Bifurcation and chaos, 1992, 2(3): 709-712
  • 6[6]Ccott Hayes, Celso Grebogi, Edward Ott. Communicating with chaos [J]. Phys. Rev. Lett., 1993, 70(20): 3031-3034
  • 7[7]Bernhardt P A. Communications using chaotic frequency modulation [J]. Int. J. Bif. Chaos, 1994, 4(2): 427-440
  • 8[8]Parlitz U, Chua L O, Kocarev L et al. Experimental demonstration of secure communications via chaotic synchronization [J]. Int. J. Bifurcation Chaos, 1993, 3:973
  • 9Feng J C, Tse C K. On-Line Adaptive Chaotic Demodulator Based on Radial-Basis-Function Neural Networks [J]. Phys Rev E, 2001,63: 1-10.
  • 10Cuomo K M, Oppenheim A V, Barron R J. Channel Equalization for Self-Synchronizing Chaotic Systems [J]. Proc IEEE ICASSP,1996, 3: 1605 - 1608.

共引文献12

同被引文献13

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部