期刊文献+

有序神经网络及在阳极效应预报中的应用 被引量:7

Ordered Neural Network and its Application to Prediction of Anode Effect
下载PDF
导出
摘要 提出了利用有序神经网络研究铝电解槽阳极效应的预报问题。概述了铝电解槽及其阳极效应的基本情况,针对铝电解槽控制难题和传统方法的不足,选择有序神经网络用于阳极效应概率预报。描述了有序神经网络的基本结构、与传统单隐层BP神经网络的区别以及由此带来的网络映射性能的改善,并使用梯度下降原则推导了有序神经网络的学习算法。使用铝电解槽的现场数据对有序神经网络进行训练并检验,结果表明有序神经网络可以比传统神经网络更及时、准确地对铝电解槽阳极效应进行预报。 Ordered neural network (ONN) is applied to prediction of anode effect (AE) in aluminium electrolysis cell. The neural network (NN) and other methods in aluminum electrolysis cell fault diagnosis are reviewed, and the comparative advantages of NN method are analyzed. ONN topology structure is introduced and learning algorithm is derived. Improvements from traditional backpropagation NN (BPNN) to ONN are illuminated. Eventually, correctness and practicality of the application is validated. ONN and some typical NNs are trained and tested with using real data from aluminum electrolysis plant. In contrast with other NNs, ONN can predict aluminum electrolysis cell AE more timely and rishtly.
作者 邢杰 萧德云
出处 《控制工程》 CSCD 2007年第1期27-30,33,共5页 Control Engineering of China
基金 国家"863"高技术研究计划资助项目(2002AA412510 2002AA412420)
关键词 有序神经网络 学习算法 铝电解槽 阳极效应 ordered neural network learning algorithm aluminum electrolysis cell anode effect
  • 相关文献

参考文献7

  • 1崔衡,谢刚,陈书荣,张雄飞.智能控制在铝电解槽中的应用[J].昆明理工大学学报(理工版),2001,26(6):101-105. 被引量:8
  • 2Munakata T.Fundamentals of the new artificial intelligence[M].NewYork:Springer-Verlag,1998.
  • 3Lavretsky E.On the exact solution of the Parity-N problem using ordered neural networks[J].Neural Networks,2000,13(6):643-649.
  • 4李爱军,章卫国,吕旸.基于有序神经网络的神经模糊预测控制[J].自动化技术与应用,2002(5):10-13. 被引量:4
  • 5Lavretsky E.Ordered neural networks:formulation,development,design and application[A].Reno,NV:Proceedings of the 37th Aerospace Sciences Meeting & Exhibit,1999.
  • 6Ferrari S,Stengel R F.Algebraic training of a neural network[C].Arlington,VA:Proceedings of the American Control Conference,2001.
  • 7Prasad S.Studies on the Hall-Heroult aluminum electrowinning process[J].Journal of the Brazilian Chemical Society,2000,11(3):245-251.

二级参考文献8

  • 1周铁托,张建.大中型预焙铝电解槽自适应控制过程的研究(下)[J].轻金属,1994(5):37-41. 被引量:11
  • 2席灿明.模糊技术在铝电解过程控制中的开发应用.中国有色金属学会第三届学术会议论文集[M].,.127-133.
  • 3吴良刚 高阳.人工神经网络专家系统的研究与展望[J].中国有色金属学报,1996,6:1-21,18.
  • 4张泰山 袁艳 等.铝电解槽神经网络专家系统[J].中国有色金属学报,1996,6(1):87-90.
  • 5Garcia, C., Model predictive conaol: theory and practice-as urvy[ J]. Autormatic, 25(3): 335 - 348,1989.
  • 6Eugene Laveresky, Neurocontrol design using ordered netorks[C] .AIAA Guidance, Navigation, and Comtrol Conference and Exhibit,pp. 1866 - 1876, 2000.
  • 7Eugene Laveresky, Ordered neural networks: formulation, analysis, design and application[C]. AIAA 99 - 0106, 37th AIAA AerospaceSciences Meeting and Exhibit, 1999.
  • 8张金平,刘莲萍,张艳芳,李康勇,程留恩,顾久和,冯淑红,叶红.新型铝电解槽控制系统[J].冶金自动化,2000,24(1):12-14. 被引量:1

共引文献10

同被引文献50

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部