期刊文献+

基于混合密度网络模型拟合收益统计分布与计算Expected Shortfall 被引量:3

Describing the Distribution of Returns and Calculating Expected Shortfall Based on Mixture Density Networks
下载PDF
导出
摘要 基于混合密度网络模型估计金融时间序列的时变条件密件,提出数值模拟方法计算ExpectedShortfall。对香港恒生指数的实证研究表明,混合密度网络可以有效地描述收益的经验分布统计特征和波动规律,模型评估指标反映出预测效果良好,Value-at-R isk的预测精度在高端分位点表现较好,且可有效计算Expected shortfall指标,是金融市场风险测量的有效方法。 This paper applies mixture density networks (MDNs) to forecast the time-varying conditional density value of financial time series, and puts forth a new numerical algorithm to calculate Expected Shortfall, The application in Hong Kong Hangseng index approves that MDNs effectively describe the empirical distribution of returns and the volatility mechanism and have good forecasting ability. As a new model for financial market risk measure, MDNs can precisely calculate both Value-at-Risk at high probability levels and Expected Shortfall.
出处 《数理统计与管理》 CSSCI 北大核心 2007年第1期137-142,共6页 Journal of Applied Statistics and Management
基金 中国矿业大学科技基金资助项目(G200401)
关键词 混合密度网络 市场风险测量 后验测试 Mixture Density Networks Market Risk Measure Back Testing
  • 相关文献

参考文献10

  • 1Piotr KULCZYCKI and Henrik SCHIOLER. Estimation of Conditional Quantile Using Neural Networks [ J ],Periodica Polytechnica Scr. El. Eng, 1999, 43(2) :109 - 126
  • 2Schittenkopf, C. and G. Dockner. Forecasting Time-dependent Conditional Densities: a Neural Network Appreach[ R], Vienna University of Economic Studies and Business Administration, 1999 Report Series No. 36.
  • 3Bartlmae, K. and R.A. Rauscher. Measuring Dax Market Risk. a Neural Network Volatility Mixture Approach[ R] , www. gloriamundi. org/var/, 2000
  • 4Dirk Husmeier, Modelling Conditional Probability Densities with Neural Networks[ D], Doctor of Philosophy,Department of Mathematics, King's College London, University of London, 1997
  • 5Andreas Lindemann, Christian L. Dunis, Paulo Lisboa. Probability Distributions, Trading Strategies and Leverage: an Application of Gaussian Mixture Models [ R ]. working papers in Centre for International Banking,Economics and Finance, March 2003, http://www. cibef. com/
  • 6Andreas Lindemann, Christian L. Dunis and Paulo Lisboa. Probability Distributions and Leveraged Trading Strategies: an Application of Gaussian Mixture Models to the Morgan Stanley High Technology 35 Index[ R],working papers in Centre for International Banking, Economics and Finance, April 2004, http ://www. cibef.com/
  • 7Locarek-Junge, H. and R. Prinzler. Estimating Value-at-Risk Using Neural Networks [ R ], Application of Machine Learning and Data Mining in Finance, ECML'98 Workshop Notes, Chemnitz, 1998
  • 8C. Schittenkopf, G. Dorffner & E.J. Dockner. Volatility Prediction with Mixture Density Networks [ C ],ICANN'98 - Proceedings of the 8th International Conference on Artificial Neural Networks , Springer, Berlin,1998, 929 -934.
  • 9Artzner P, Delbaen F, Eber J - M, Heath D. Coherent Measures of Risk [ J ]. Mathematical Finance,1999, 9(3): 203-228
  • 10Carlo Acerbi. Dirk Tasche. On the Coherence of Expected Shortfall [ J ]. Journal of Banking & Finance,2002. 26(7) : 1487 - 1503.

同被引文献22

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部