期刊文献+

ACS优化算法在设计洪水计算中的应用研究

The study on ant colony system optimization algorithm applied in computation of the design flood
下载PDF
导出
摘要 采用蚁群ACS改进优化算法求解了典型洪水同频率放大问题,构造了用于设计洪水过程求解的蚂蚁觅食概化结构图,并给出了具体求解思路和流程。通过实际洪水放大的计算,证实了该方法在洪水同频率放大优化模型中的合理性和有效性,并给出了下一步研究的方向及建议。 The ACS algorithm inspired by the ants foraging principle is used to solve the problem of the homogenous frequency enlargement of design flood in this paper ,the sketch of ants foraging about design flood computation is constructed and retailed process is provided. The validity of the ACS method applied in the flood's enlargement is confirmed by the given example ,finally,some further suggestions are presented.
出处 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2007年第1期229-234,共6页 Journal of Northwest A&F University(Natural Science Edition)
基金 国家自然科学基金项目(50479024) 陕西省教育厅专项科研计划项目(04JK233) 青海省科技厅项目(2004-G-158) 陕西省教育厅省级重点实验室项目(02JS37)
关键词 设计洪水过程线 蚁群算法 同频率放大 组合优化 蚁群系统 design hydrograph ant colony optimization homogenous frequency enlargement combinatorial optimization ant colony system
  • 相关文献

参考文献5

  • 1Marco D,luca M G.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):1-26.
  • 2Luca M G,Marco D.Ant-Q a reinforecment learning approach to the traveling salesman problem[C].Proceeding of 12th machine learning conference.Palo Alto,CA:morgan kauffman,1995:252-260.
  • 3刘士新,宋健海,唐加福.蚁群最优化——模型、算法及应用综述[J].系统工程学报,2004,19(5):496-502. 被引量:36
  • 4邹政达,孙雅明,张智晟.基于蚁群优化算法递归神经网络的短期负荷预测[J].电网技术,2005,29(3):59-63. 被引量:46
  • 5Colorni A,Marco D,Maniezzo V.An investigation of some properties of an "Ant algorithm"[C].Proceedings of the parallel problem solving from nature conference (PPSN92).Belgium:Elsevier Publishing,1995:509-520.

二级参考文献53

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agants[J]. IEEE Trans on Systems, Man and Cybernetics, Part B, 1996, 26(1): 29-41.
  • 3Colomi A, Dorigo M, Maniezzo V. An investigation of some properties of an ant algorithm[C]. Proceedings of the Parallel Problem Solving from Nature Conference (PPSN'92)[A], Brussels, Belgium:Elsevier Publishing, 1992: 509-520.
  • 4Dorigo M, Caro G. D. Ant colony optimization: a new meta-heuristic[C]. Proceedings of the 1999 congress on Evolutionary computation[A]. Washington, DC: USA, 1470-1477.
  • 5Dorigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transon, Evolutionary Computation, 1997, 1(1): 53-66.
  • 6El-Keib A A, Sisworahardjo N S. Unit commitment using the ant colony search algorithm[C]. Power Engineering 2002, Conference on,Large Engineering Systems[A]. LESCOPE 02, Pages: 2-6.
  • 7Maniezzo V, Colomi A, Dorigo M. The ant system applied to the quadralic assignment problem[J]. Knowledge and Data Engineering,IEEE Transactions on, 1999, 11(5): 769-778.
  • 8Merp P, Freisleben B, A comparison of memetic algorithms, tabu search, and ant colonies for the quadratic assignment problem[C]. Evolutionary Computation, CEC 99, Procedings of the 1999 Congress on, Vol. 3, Pages: 2070.
  • 9Yu Inkeun, Chou C S, Song Y H. Application of the ant colony search algorithm to short-term generation scheduling problem of thermal units[C]. Proceedings of POCON'98, International Conference on Power System Technology, Beijing, China, 1998, 552-556.
  • 10Zhang Subing, Liu Zemin. Neural Network Training Using Ant Algorithm In ATM Traffic Control[C]. The 2001 IEEE International Symposium on, 2001, Vol.2, Page(s): 157-160.

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部