期刊文献+

体全息光栅偏移布拉格角读出时衍射角的测定 被引量:2

Experimental determination of the diffraction angle of volume holographic gratings under off-bragg condition
下载PDF
导出
摘要 体全息光栅的读出偏离布拉格条件时,衍射光方向的确定是体光栅耦合波理论中的一个重要问题。前人(例如Kogelnik和Heaton)对此有两种不同的假设,基于这两种假设算出的衍射光方向有一定差别。我们设计实验,较精确地测量了透射式和反射式光栅在不同写入条件下衍射光方向随读出光角度变化的规律。实验结果表明,衍射光的方向并不是简单地符合某种假设,而是与两写入光的角度和光栅的倾斜度有很大关系。特别是对反射式全息图,光栅矢量的倾斜角越大,衍射光方向越接近于Kogelnik的假设。反之,衍射光方向越接近于Heaton等人的假设。 When a volume holographic grating is readout under off- Bragg condition, determining the direction of the diffracted beam is an important issue in the coupled - wave theory of volume gratings. Previous authors ( Kogelnik and Heaton et all presented two different assumptions about this subject, leading to different diffracted angles. In this paper, we designed experiments to accurately measure the dependence of the direction of diffracted beam on the direction of replay beam. The experimental measurements have been conducted for both transmission and reflection holograms, under various recording conditions. The results show that, the direction of diffracted beam does not simply accord with one assumption, and it has a close relation with the recording angle and the grating slant angle. Especially, in the case of reflection holograms, when the grating slant angle is lair, the diffracted beam' s direction agrees mere with Kogelnik' s assumption, and vice versa.
出处 《激光杂志》 CAS CSCD 北大核心 2007年第1期47-49,共3页 Laser Journal
基金 国家自然基金项目(60477004)资助
关键词 耦合波理论 体光栅衍射 布拉格失配 coupled wave theory volume grating diffraction off- Bragg
  • 相关文献

参考文献5

  • 1Kogelnik H.Coupled wave theory for thick hologram gratings[J].Bell Syst.Techn.,1969,48 (9):2909-2947.
  • 2Kukhtarev N V.Markov V B.Odulov S G.Soskin M S.Vinetskii V L.Holographic Storage in Electrooptic Crystals.I.Steady State[J].Ferroelectrics,1979,22:949-960.
  • 3Heaton J M.Mills P A.Paige E S.Solymar L.Wilson T.Diffraction Efficiency and Angular Selectivity of Volume Phase Holograms Recorded in Photorefractive Materials[J].Optica Acta,1984,3l (8):885-901.
  • 4Tao S Q.Burr G W.Performance Optimization of Volume Gratings with Finite Size Through Numerical Simulation[R].Series,v 96 A.OSA Trends in Optics and Photonics Series:Conference on Lasers and Electro-Optics[C].CLEO,2004,543-545.
  • 5A.雅里夫.光电子学导论[M].北京:科学出版社,1983.

共引文献2

同被引文献17

  • 1梁国栋,徐迈,邹景惠.体积相位全息光栅的设计与制备[J].光子学报,1995,24(1):43-47. 被引量:2
  • 2李亚玲,李文博,李宓善,李晔,袁广军,张驰.光栅衍射和布拉格公式[J].大学物理,2005,24(9):30-32. 被引量:3
  • 3Ludman J E, Riccobono J, Reinhand N, et al. Holographic Nonspatial Fitler [J]. SPIE, 1995, 2532: 481-490.
  • 4Jacques E Ludman, Juanita R Riccobono, Nadya O Reinhand, et al. Very thick holographic nonspatial filtering of laser beams [J]. Opt. Eng(S0091-3286), 1997, 36(6): 1700-1705.
  • 5Michele Henrion, Jacques Ludman, Gennadi Sobolev, et al. Two-dimensional holographic nonspatial filtering for laser beams [J].SPIE, 1998, 3417: 195-206.
  • 6Igor V Ciapurin, Leonid B Glebov, Vadim I Smimov. Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass [J]. SPIE, 2005, 5742: 183-194.
  • 7Kogelnik H. Coupled wave theory for thick hologram gratings [J]. Bell System Technical Journal, 1996, 48(9): 2909-2947.
  • 8UPATNIEKS J.Edgeilluminated holograms[J].Applied Optics199231(8):1048-1052.
  • 9HUANG QGILBERT J A.Diffraction properties of substrate of guidedwave holograms[J].Optical Engineering199534(10):2891-2899.
  • 10PUTILIN AGUSTOMIASOV I.Application of holographic elements in displays and planar illuminators[C]//SPIE 20076637:66370N1-66370N7.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部