期刊文献+

求解约束优化问题的人工鱼群算法 被引量:23

Artificial Fish-Swarm Algorithm for solving constrained optimization problems
下载PDF
导出
摘要 在利用人工鱼群算法求解约束问题时,处理好约束条件是取得好的优化效果的关键。引入了半可行域的概念,并结合人工鱼群算法(ArtificialFish-SwarmAlgorithm,AFSA)本身的特点,设计了基于竞争选择和惩罚函数的适应度函数,从而得到了一个利用ASFA算法求解约束优化问题的新的进化算法。实验证明了算法的有效性。 In trying to solve constrained optimization problems by Artificial Fish-Swarm Algorithm(AFSA),the way to handle the constrained conditions is the key factor for success.In this paper,we introduce the concept of semi-feasible region.Making use of characteristics of artificial fish-swarm algorithm,we design the fitness function of evolutionary algorithm,which is based on tournament selection and penalty function.Then a new method is proposed,which means using the AFSA to solve constrained optimiztion problems.Numerical experiments demonstrate the effect of the method.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第3期40-42,63,共4页 Computer Engineering and Applications
基金 上海市重点学科建设项目(T0602) 上海市教育委员会科研项目(04FA02 05FZ06)。
关键词 约束优化问题 人工鱼群算法 半可行域 竞争原则 constrained optimization problems Artificial Fish-Swarm Algorithm(AFSA) semi-feasible region tournament selection
  • 相关文献

参考文献10

二级参考文献48

  • 1张利彪,周春光,刘小华,马铭,吕英华,马志强.求解约束优化问题的一种新的进化算法[J].吉林大学学报(理学版),2004,42(4):534-540. 被引量:23
  • 2詹士昌.基于退火不可行度的约束优化问题遗传算法[J].应用基础与工程科学学报,2004,12(3):299-304. 被引量:4
  • 3戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 4Grudinin N. Reactive Power Optimization Using Successive Quadratic Programming Method [ J ]. IEEE Trans on PWRS,1998,13 (4): 1219-1225.
  • 5Laguna M, Glover F. Bandwidth Packing: A Tabu Search Approach [ J ]. Management Science, 1993,39 (4) :492-500.
  • 6Swarm-semiotics J H, Rauch I, Carreds G. Semiotics Around the World [ A ]. Proceedings of the Fifth Congress of the International Association for Semiotic Studies. Berkeley (Barlin) : 1994. Berlin/New York: 1997.937-940.
  • 7张伯明.高电力网络分析(AdvancedAnalysisofPowerSystem)[M],CHENShou-sun),陈寿孙(ZHANGBo-ming,Tsinghua University Press)[M].北京:清华大学出版社(Beiing,1994..
  • 8Michalewicz Z, Schoenauer M. Evolutionary Algorithms for Constrained Parameter Optimization Problems. Evolutionary Computation, 1996, 4( 1 ): 1-32
  • 9Deb K. An Efficient Constraint Handling Method for Genetic Algorithms. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2-4): 311-338
  • 10Runarsson T P, Yao X. Stochastic Ranking for Constrained Evolutionary Optimization. IEEE Trans.on Evolutionary Computation,2000,4(3): 284-294

共引文献963

同被引文献176

引证文献23

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部