期刊文献+

一种SRBCT亚型识别与特征基因选取方法 被引量:1

Approach to subtype recognition and selection of informative genes for SRBCT
下载PDF
导出
摘要 基于基因表达谱提出了一种选取特征基因并使用多类支持向量机(MSVM)进行肿瘤亚型识别的方法。就小圆蓝细胞瘤(SRBCT)的亚型识别问题,以组间和组内平方和比率(BSS/WSS)作为衡量基因分类重要性的标准,据此选择基因构造若干MSVM模型,由分类错误率确定了含25个基因的特征集合,并利用基于相关距离的冗余分析方法去除冗余,得到15个特征基因。基于该特征子集构造的MSVM在测试集上取得100%的预测准确率。与相关文献的比较表明了该方法的有效性和可行性。 An approach to tumor molecular classification based on their gene expression profiles is presented.A new measure known as between-groups to within-groups sums of squares ratio(BSS/WSS) is used as the criterion of screening predictive genes for SRBCT subtype recognition.The 152 genes are chosen by this criterion and form the feature set whose subsets will be used to create MSVM models to identify the subtypes.The trained MSVM based on the top 25 genes ranked by BSS/WSS is able to achieve 100% accuracy on the training and blind test dataset.Then this subset is analyzed by the dissimilarity distance to remove its redundancy.As a result,the 15 genes are retained with the same accuracy as the subset of 25 genes and are regarded as the final subset.Comparison with other methods demonstrates efficiency and feasibility of the method and the predictive models proposed in this work.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第3期223-226,共4页 Computer Engineering and Applications
关键词 多类支持向量机 基因表达谱 特征选取 Multi-category Support Vector Machine(MSVM) gene expression profiles feature selection
  • 相关文献

参考文献6

  • 1Ramaswamy S,Golub T R.DNA microarrays in clinical oncology[J].Journal of Clinical Oncology,2002,20(7):1932-1941.
  • 2Khan J,Wei J S,Ringner M,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J].Nature Med,2001,7(6):673-679.
  • 3Tibshirani R,Hastie T,Narasimhan B,et al.Diagnosis of multiple cancer types by shrunken centroids of gene expression[J].PNAS,2002,99:6567-6572.
  • 4Yeo G,Poggio T.Multiclass classification of SRBCT[J].CBCL Meno,2001,18:83-84.
  • 5Vapnik V N.Statistical learning theroy[M].New York:Wiley Interscience,1998.
  • 6Lee Y,Lin Y,Wahba G.Multicategory Support Vector Machines,theory,and application to the classification of microarray data and satellite radiance data[J].Journal of the American Statistical Association,2004,99:67-68.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部