摘要
向量极值问题的Benson真有效解,是优化问题的一个最重要的方面,吸引了许多关注的目光.在序拓扑向量空间中,运用G-可微函数的性质和文献[1]中的定理4.1,获得了带集合约束的可微向量极值问题的Benson真有效解的几个最优性必要条件和充分条件.
Benson proper efficient solution for vector extremum problems is the most important aspect of optimization problems, and it has drawn lots of attention. In ordered topological vector spaces, by applying characterizations of G-differentiable function and Theorem 4.1 of Ref [ 1 ], several optimality necessary conditions and sufficient conditions of Benson proper efficient soluton for differentiable vector extremum problems with set constraint are obtained.
出处
《重庆交通学院学报》
2007年第1期161-163,共3页
Journal of Chongqing Jiaotong University
基金
重庆交通大学科学基金资助课题(2006-026)
关键词
向量极值问题
BENSON真有效解
G-可微
最优性条件
vector extremum problems
Benson proper efficient solution
G-differentiable
optimality conditions