摘要
针对工业慢时变系统非线性、调节时间长、参数难以用常规PID控制方法整定等的特点,提出了一种混合神经网络参数自整定复合控制方案。将BP网络和PID结合起来充当系统的控制器,实现PID参数的自整定,RBF网络充当辨识器,实现对受控对象模型的辨识。仿真结果表明,该系统具有较好的性能。
To overcome the defects of the slow time-varying system, a mixed neural network of parameters selfsetting control strategy is proposed. The BP network is combined with PID as the controller. The self-setting of parameters is realized. The RBF network is used as the identifier to identify the controlled object model. The simulation results prove that this control system is effective.
出处
《华北电力大学学报(自然科学版)》
CAS
北大核心
2007年第1期67-69,共3页
Journal of North China Electric Power University:Natural Science Edition
关键词
慢时变
混合神经网络
辨识器
参数自整定
slow time-varying
mixed neural network
identifier
parameters self-setting