期刊文献+

一类二阶中立型Rayleigh方程周期解的存在性

Existence of Periodic Solutions to a Type of Second Order Rayleigh Neutral Equation
下载PDF
导出
摘要 利用Mawhin重合度拓展定理,研究了一类二阶中立型Rayleigh方程[x(t)+ni=1"cix(t-τi)]''=f(x'(t))+g(x(t-γ(t))+p(t)周期解的存在性,给出了该方程存在周期解的充分性定理。 The existence of periodic solutions to a type of second order Rayleigh neutral equation [x(t)+^n∑i=1 c,x(t-Ti)]″=f(x′(t))+g(x(t-γ(t))+p(t)with multiple deviating arguments is studied by means of the meatheds presented in coincidence degree theory,and sufficient conditions of the equation with periodic solutions are obtained.
作者 文乾
出处 《安庆师范学院学报(自然科学版)》 2006年第4期80-83,共4页 Journal of Anqing Teachers College(Natural Science Edition)
基金 安徽省自然科学基金(No.050460103) 安徽省教育厅自然科学重点基金(2005kj03lzD)资助
关键词 中立型Bayleigh方程 周期解 拓展定理 rayleigh neutral equation periodic solution continuation theorem
  • 相关文献

参考文献4

二级参考文献27

  • 1葛渭高.多滞量时滞微分方程周期解的存在性[J].应用数学学报,1994,17(2):173-181. 被引量:11
  • 2Hale, J, K, Mawhin, J.: Coincidence degree and periodic solutions of neutral equations. J. Diff. Eqns,15, 295-307 (1975).
  • 3Fan, M, Wang, K.: Periodic solutions of convex neutral functional differential equations, Tohoku J. Math,52, 47-49 (2000).
  • 4Hale, J. K.: Theory of functional differential equations, Springer-Verlag, New York, 1977.
  • 5Bartsch, Th, Mawhin, J.: The Leray Schauder degree of S^1-equivariant operator associated to autonomous neutral equations in spaces of periodic functions. J. Differential Equations, 92, 90-99 (1991).
  • 6Serra, E.: Periodic solutions for some nonlinear differential equational equations of neutral type, Nonlinear Analysis, TMA, 17, 1:139-151 (1991).
  • 7Lu, S. P, Ge, W. G.: On the existence of periodic solutions for neutral functional differential equation.Nonlinear Analysis, TMA, 54, 1285-1306 (2003).
  • 8Lu, S. P, Ge, W. G.: On the existence of periodic solutions for a kind of second order n-Dimensional neutral differential equation. Aeta Mathematica Sinica, Chinese Series, 46(3), 601-610, (2003).
  • 9Lu, S. P, Ge, W. G, Zheng, Z. X.: Periodic,solutions to neutral functional differential equation with deviating arguments. Applied Mathematics and Computation, 152(1), 17-27 (2004).
  • 10Lu, S, P, Ge, W. G.: Problems of periodic solutions for a kind of second order neutral functional differential equation. Applicable Analysis, 82(5), 393-410 (2003).

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部