摘要
Cyclic AMP (cAMP), as a second messenger, plays a critical role in cellular signaling transduction. However, it is not clear how this apparently identical cAMP signal induces divergent physiological re- sponses. The potential explanation that cAMP signaling is compartmentalized was proposed by Buxton and Brunton twenty years ago. Compartmentalization of cAMP signaling allows spatially distinct pools of protein kinase A (PKA) to be differently activated. Research on cAMP signaling has regained impetus in many fields of life sciences due to the progress in understanding cAMP signaling complexity and functional diversity. The cAMP/PKA signaling compartments are maintained by A-kinase anchoring proteins (AKAPs) which bind PKA and other signaling proteins, and by PDEs which hydrolyse cAMP and thus terminate PKA activity. PDE4 enzymes belong to PDE superfamily and stand at a crossroad that allows them to integrate various signaling pathways with that of cAMP in spatially distinct com- partments. In the current review, the nomenclature, taxonomy and gene expression of PDE4, and the system and region of its effect are described. In addition, the idiographic molecules, mechanisms, and regulation models of PDE4 are summarized. Furthermore, the important roles PDE4 plays in the matu- ration of rat granulosa cells and cAMP signaling compartmentalization are discussed.
Cyclic AMP (cAMP), as a second messenger, plays a critical role in cellular signaling transduction. However, it Is not clear how this apparently identical cAMP signal induces divergent physiological responses. The potential explanation that cAMP signaling is compartmentalized was proposed by Buxton and Brunton twenty years ago. Compartmentalization of cAMP signaling allows spatially distinct pools of protein kinase A (PKA) to be differently activated. Research on cAMP signaling has regained impetus in many fields of life sciences due to the progress in understanding cAMP signaling complexity and functional diversity. The cAMPIPKA signaling compartments are maintained by A-kinase anchoring proteins (AKAPs) which bind PKA and other signaling proteins, and by PDEs which hydrolyse cAMP and thus terminate PKA activity. PDE4 enzymes belong to PDE superfamily and stand at a crossroad that allows them to integrate various signaling pathways with that of cAMP in spatially distinct compartmenta. In the current review, the nomenclature, taxonomy and gene expression of PDE4, and the system and region of its effect are described. In addition, the idiographic molecules, mechanisms, and regulation models of PDE4 are summarized. Furthermore, the important roles PDE4 plays in the matu- ration of rat granulosa cells and cAMP signaling compartmentalization are discussed.
基金
Supported by the National Natural Science Foundation of China (Grant No. 30571335)
a Grant-in-Aid for Innovatory Training of Graduated Students in Jiangsu Province, China
关键词
磷酸二酯酶
区分方法
粒子细胞
CAMP
PDE4, phosphodiesterase, cAMP signaling, signal compartmentalization, granulosa cell PDE4, phosphodiesterase, cAMP signaling, signal compartmentalization, granulosa cell