期刊文献+

固体脂质微颗粒表面稳定剂的分布状况对其稳定性的影响:介观模拟与实验 被引量:4

Stabilizer distribution on surface of solid lipid microparticles and SLM stability: mesoscale simulation and experiments
下载PDF
导出
摘要 用耗散粒子动力学(DPD)方法研究了稳定剂在负载布洛芬的固体脂质微颗粒(solid lipid microparticles,SLM)表面的分布状况。模拟结果表明:以卵磷脂为稳定剂,当布洛芬的摩尔分数为1%和2%时,卵磷脂较好地包覆在颗粒的表面;而当布洛芬的摩尔分数增大到3%和5%时,卵磷脂不能覆盖在布洛芬分子密集的部位。以poloxamer 407和PVA为稳定剂,随着布洛芬摩尔分数由1%增大到5%,稳定剂都能很好地包覆在颗粒的表面。实验现象较好地吻合了模拟结果。采用DPD模拟方法,可以加深了解多相复杂载药体系的微观结构并对实验现象进行分析,为SLM稳定剂的筛选提供理论指导。 Dissipative particle dynamics (DPD) simulation was used to model the distribution of stabilizers (lecithin, poroxamer and PVA) on the surface of ibuprofen-loaded solid lipid microparticles (SLM) . It was shown from DPD simulation results that lecithin totally enwrapped the surface of SLM when the molar fraction of ibuprofen was 1% and 2 %. However, when the molar fraction of ibuprofen was increased to 3 and 5 %, lecithin could not cover the place with a higher concentration of ibuprofen molecules. Poloxamer 407 and PVA totally enwrapped the surface of SLM when the molar fraction of ibuprofen was increased from 1% to 5 %. The experimental results could be interpreted with the simulation results. DPD simulation provides an insight into the microstructure of a drug carrier and helps to analyze the experimental results, which is helpful in stabilizer selection for SLM.
出处 《化工学报》 EI CAS CSCD 北大核心 2007年第1期181-189,共9页 CIESC Journal
基金 国家自然科学基金项目(20476033 20376025 20536020) 国家杰出青年基金项目(20225620) 广东省自然科学基金项目(0402121)~~
关键词 耗散粒子动力学 介观模拟 稳定剂 固体脂质微颗粒 dissipative particle dynamics mesoscale simulation stabilizer solid lipid microparticles
  • 相关文献

参考文献22

  • 1Mehnert W,Mder K.Solid lipid nanoparticles production,characterization and applications.Adv.Drug Deliv.Rev.,2001,42:165-196
  • 2Gasco M R.Method for producing solid lipid microspheres having a narrow size distribution:US,5250236.1993-10-05
  • 3Müller R H,Radtke M,Wissing S A.Solid lipid nanoparticles(SLN)and nanostructure lipid carriers(NLC)in cosmetic and dermatological preparations.Adv.Drug Deliv.Rev.,2002,54(Suppl.1):S131-S155
  • 4Freitas C,Müller R H.Correlation between long-term stability of solid lipid nanoparticles and crystallinity of the lipid phase.Eur.J.Pharm.Biopharm.,1999,47:125-132
  • 5Cortesi R,Esposito E,Luca G,Nastruzzi C.Production of lipospheres as carriers for bioactive compounds.Biomaterials,2002,23:2283-2294
  • 6Zimmermann E,Müller R H.Electrolyte-and pH-stabilities of aqueous solid lipid nanoparticle dispersions in artificial gastrointestinal media.Eur.J.Pharm.Biopharm.,2001,52:203-210
  • 7Mollet H,Frubenmann A.Formulation technology:emulsions,suspensions,solid forms.Yang Guang(杨光),trans.Beijing:Chemical Industry Press,2004:92-98
  • 8Leach A R.Molecular modelling principles and applications.2nd ed.London:Longman Press,2001:402
  • 9Hoogerbrugge P J,Koelman J M V A.Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics.Europhys.Lett.,1992,19(3):155-160
  • 10Nakamura H,Tamura Y.Phase diagram for self-assembly of amphiphilic molecule C12E6 by dissipative particle dynamics simulation.Computer Phys.Comm.,2005,169:139-143

同被引文献65

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部