期刊文献+

考虑剪切变形效果的薄壁结构三维动力计算 被引量:2

3-D dynamic computation of thin-walled structures with considering the effects of shear deformations
下载PDF
导出
摘要 为了分析考虑剪切变形效果的薄壁结构三维振动响应,本文推导剪切变形梁柱单元动力刚度矩阵,首先列出一般形式下薄壁梁柱的势能方程,得到位移与力之间的转换方程;接着,推导力与变形的关系,并采用变分原理,从势能方程中得到动力方程;然后,构造14个位移参数的变量来对高阶的动力方程进行降阶与求解,从而得到精确的位移函数表达式及动力刚度矩阵。数值算例的检验结果表明,这套程序计算所得到的结果与NASTRAN计算结果相一致,说明这一结果具有较好的通用性,它提供给薄壁结构振动计算一个较为实用的工具。 For analysis of spatial vibration of thin-walled space frame members with considering the effects of shear deformations,this article derives dynamic stiffness matrix for a shear-deformable beam-column element. First, total potential energy of thin-walled beam-columns in the general form is presented, and the transformation equations between displacements and forces are dervied. Next, force-deformation relations are obtained and the dynamic equations are dervied from the total potential energy by invoking the variation principle. And then, the higher order differential equations may be transformed into the first order differential equations by choosing a variable which contains 14 displacement parameters, the explicit expressions for displacement parameters and exact dynamic stiffness matrix are thus determined. The numerical example indicates that the results gotten by this program are consistent to those gotten by NASTRAN, so it's a general formulation and provides an applied tool for the vibration computation of thin-walled structures.
出处 《水力发电学报》 EI CSCD 北大核心 2007年第1期77-83,共7页 Journal of Hydroelectric Engineering
关键词 结构工程 三维动力刚度矩阵 变分原理 非线性翘曲 structure engineering 3-D dynamic stiffness matrix variation principle non-linear warp
  • 相关文献

参考文献10

  • 1罗漪,王全凤.变刚度薄壁杆件的动力稳定性[J].华侨大学学报(自然科学版),2001,22(3):272-277. 被引量:6
  • 2童根树,张磊.薄壁构件弯扭失稳的一般理论[J].建筑结构学报,2003,24(3):16-24. 被引量:15
  • 3Gosowski B.Spatial stability of braced thin-walled members of steel structures[J].Journal of Constructional Steel Research,2003,59 (2):839 ~ 865.
  • 4Banerjee J R,Williams F W.Coupled bending-torsional dynamic stiffness matrix for Timoshenko beam elements[J].Computers and Structures,1992,42(3):301 ~ 310.
  • 5Banerjee J R.Dynamic stiffness formulation for structural elements[J].Computers and Structures,1997,63 (1):101 ~103.
  • 6辛克贵,姜美兰.薄壁杆件稳定分析的样条有限杆元法[J].清华大学学报(自然科学版),2001,41(4):235-239. 被引量:9
  • 7辛克贵,钱良忠.高层筒体结构的整体稳定及二阶位移分析[J].清华大学学报(自然科学版),2003,43(10):1386-1389. 被引量:5
  • 8卢开澄.图论及其应用[M].北京:清华大学出版社,1984..
  • 9Alfano G,Marotti F,Rosati L.Automatic analysis of multicell thin-walled sections[J].Computers and Structures,1996,59(4):641 ~ 655.
  • 10聂孟喜,杨建宏.三峡工程升船机塔柱结构卷扬、螺母螺杆方案动力计算比较[R].95-9-4-1-2,北京:清华大学水利水电工程系,2004.1.

二级参考文献23

  • 1吴秀水.考虑剪切变形的薄壁杆件分析[J].工程力学,1993,10(1):76-84. 被引量:15
  • 2王建东,包世华.高层筒体结构的二阶分析[J].工程力学,1995,12(3):31-38. 被引量:7
  • 3王全凤,李华煜.任意截面形状薄壁压杆的稳定[J].土木工程学报,1996,29(6):14-24. 被引量:9
  • 4钢结构设计规范管理组翻译.ISO/TVl47 Steel structures,Material and Design[M].,1996..
  • 5F柏拉希.金属结构的屈曲强度[M].北京:科学出版社,1965..
  • 6鹫津久一郎(日)著 老亮 郝松林译.弹性和塑性力学中的变分法[M].北京:科学出版社,1984..
  • 7刘开国.高层框简及简中简结构的整体稳定计算[A]..高层建筑抗震方法讨论会[C].广州,1987..
  • 8梁启智 谢理.框剪结构的二阶分析[J].建筑结构学报,1985,(5):21-25.
  • 9TIMOSHENKO S P, GERE J G. Theory of elastic stability[M]. 2nd Edition. McGraw-Hill, 1961.
  • 10TRAHAIR N S. Flexural-torsional buckling of structures[M]. London: E & FN SPON, 1993.

共引文献47

同被引文献19

  • 1吴秀水.考虑剪切变形的薄壁杆件分析[J].工程力学,1993,10(1):76-84. 被引量:15
  • 2胡毓仁.图论在薄壁杆件结构计算中的应用[J].武汉轻工科技,1989,23(6):21-29. 被引量:3
  • 3汤建宏,聂孟喜,梁应辰.复杂薄壁建筑物断面特性判定及几何参数的图论处理[J].水运工程,2006(3):13-17. 被引量:5
  • 4HU Yuren, JIN Xianding, CHEN Bozhen. A finite element model for static and dynamic analysis of thin-walled beams with asymmetric cross-sections [J]. Computers&Structures, 1996, 61(5): 897-908.
  • 5Kim M Y, Kim NII, Yun H T. Exact dynamic and static stiffness matrices of shear deformable thin-walled beam-columns [J]. Journal of Sound and Vibration, 2003.. 29 - 55.
  • 6徐芝纶.弹性力学简明教程[M].2版.北京:高等教育出版社,1983:8-9:119-159.
  • 7Vlasov V Z. Thin-Walled Elastic Beams [M]. 2nd ed Jerusalem: Israel Program for Scientific Translations 1961.
  • 8Benscoter S U. A theory for torsion and bending for multicell beams [J]. Journal of Applied Mechanics, 1954, 21: 25-34.
  • 9Kollbrunner C F, Basler K. Torsion in Structures [M]. Berlin: Springer-Verlag, 1969.
  • 10Gunnlaugsson G A, Pedersen P T. A finite element formulation for beams with thin walled cross-sections [J]. Computers & Structures, 1982, 15(6): 691-699.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部