期刊文献+

Sn冷铜型方法对铸造Al-Si-Mg合金组织和力学性能的影响

Effect on the Microstructure and Mechanical Properties of Al-Si-Mg Alloy with Sn-cooling Copper Mold
下载PDF
导出
摘要 选用金属Sn为冷却介质,将Al-Si-Mg铝合金熔体浇注到预制的模型中,制备Ф10mm的棒状试样,并且对合金的组织和力学性能进行了研究。结果表明,应用Sn冷铜型方法,可以将试样的晶粒尺寸细化到5μm,与相同条件下水冷铜型得到的试样(8μm)相比,晶粒尺寸细化了37.5%;铸态组织的显微硬度提高了33.3%(Sn冷铜型:80HV0.05;水冷铜型:60HV0.05),试样的抗拉强度提高了22.9%(Sn冷铜型:220MPa;水冷铜型:179MPa)。Sn冷铜型方法可以明显细化合金组织,提高合金的力学性能,有很好的应用前景。 The melt of casting Al-Si-Mg aluminum alloys was cast into the mold cooled by Sn, then bar shape samples with a diameter of 10 mm were prepared. Microstructure and mechanical properties of the alloy were studied. The results shows that, compared with water cooling copper mold, microstructure with grain size of 5 μm in diameter could be obtained by Sn-cooling copper mold technique, which was refined 37.5% than that made by water-cooling copper mold (8 μm ); micro-hardness (HV) was improved 33.3% (Sn-cooling copper mold: 80 HV0.05; water-cooling copper mould: 60 HV0.05) and ultimate tensile strength (UTS) was improved 22.9% (Sn-cooling copper mold: 220 MPa; water-cooling copper mould: 179 MPa ). Therefore, Sn-cooling copper mold technique could obviously refine microstructure, improve mechanical properties and have a potential prospect in practical applications.
出处 《铸造》 EI CAS CSCD 北大核心 2007年第1期14-17,共4页 Foundry
关键词 Sn冷铜型 晶粒尺寸 冷却速度 显微硬度 抗拉强度 Sn-cooling copper mold grain size cooling rate micro-hardness tensile strength
  • 相关文献

参考文献10

  • 1GOKHALE A M,PATEL G R.Analysis of variability in tensile ductility of a semi-solid metal cast A356 Al-alloy[J].Mater Sci Eng,2005,A392:184-190.
  • 2YANG Z,KANG C G,SEO P K.Evolution of rheocasting structure of A356 alloy investigated by large-scale crystal orientation observation[J].Scripta Mater,2005,52:83-288.
  • 3WANG J,HE S X,SUN B D,et al.Grain refinement of Al-Si alloy (A356) by melt thermal treatment[J].J Mater Process Tech,2003,141:29-34.
  • 4GRIFFITHS W D,MCCARTNEY D G.The effect of electromagnetic stirring during solidification on the structure of Al-Si alloys[J].Mater Sci Eng,1996,A216:47-60.
  • 5XU H B,JIAN X G,MEEK T T,et al.Degassing of molten aluminum A356 alloy using ultrasonic vibration[J].Mater Lett,2004,58:3 669-3 673.
  • 6KIM J C,NISHIDA Y,ARIMA H,et al.Microstructure of Al-Si-Mg alloy processed by rotary-die equal channel angular pressing[J].Mater Lett,2003,57:1 689-1 695.
  • 7LEE S H,SAITAO Y,SAKAI T,et al.Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding[J].Mater Sci Eng,2002,A325:228-235.
  • 8NEIKOV O D,VASILIEVA G I,SAMILJUK A V,et al.Water atomised aluminum alloy powders[J].Materials Science and Engineering,2004,A383:7-13.
  • 9HAGA T,TAKAHASHI K,WATARI H.A vertical-type twin roll caster for aluminum alloy strips[J].J Mater Process Tech,2003,140:610-615.
  • 10KATGERMAN L,DOM F.Rapid solidified aluminum alloys by melt spinning[J].Mater Sci Eng,2004,A 375/377:1 212-1 216.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部