期刊文献+

基于神经网络的双金属复合弯管铸造过程的数值仿真 被引量:5

Numerical Simulation for Casting Process of Double-metal Composite Bend Pipe Based on Artificial Neural Network
下载PDF
导出
摘要 给出了双金属复合管的铸造工艺,研究了人工神经网络技术在铸造数值仿真优化中的应用,人工神经网络采用基于自适应学习率-动量项的误差反向传播梯度下降算法。用热电偶对双金属复合管铸造温度场进行了实测,并以温度场实测数据为样本,仿真了双金属复合管充型凝固过程的温度分布。通过实测数据与仿真数据的比较,神经网络优化处理后仿真的最大相对误差为2.1%。铸造过程的仿真为双金属复合管的设计和工艺制订提供了理论依据。 A casting technology of double-metal composite bend pipe is presented, optimization of numerical simulation in casting process is investigated based on artificial neural network, a gradient-descendent algorithm of error back-propagation with adaptive learning rate and momentum is applied. The solidifying temperature of double-metal composite bend pipe is tested by thermo-couples, the data of specimens obtained by the testing results of temperature field is trained, the temperature distribution during filling and solidification is simulated; By contrasting the data of simulation with those of testing, the maximum relative error of simulation is 2.1%, and the theory basis is presented for updating design and technology.
作者 张俊
机构地区 襄樊学院机械系
出处 《铸造》 EI CAS CSCD 北大核心 2007年第1期56-58,共3页 Foundry
关键词 双金属复合管 铸造 人工神经网络 数值仿真 double-metal composite bend pipe casting artificial neural network numerical simulation
  • 相关文献

参考文献3

二级参考文献3

共引文献17

同被引文献51

  • 1时志刚,冯明志,高荃.我国船舶柴油机发展展望[J].柴油机,2012,34(1):1-3. 被引量:4
  • 2李萍,薛克敏.基于人工智能的钛合金热变形工艺参数优化[J].中国有色金属学报,2006,16(7):1202-1206. 被引量:5
  • 3周古为,郑子樵,李海.基于人工神经网络的7055铝合金二次时效性能预测[J].中国有色金属学报,2006,16(9):1583-1588. 被引量:18
  • 4[2]Badrossamay M,Childs T H C.Further studies in selective laser melting of stainless and tool steel powders[J].International Journal of Machine Tools & Manufacture,2007,47:779-784.
  • 5[3]Caulfield B,McHugh P E,Lohfeld S.Dependence of mechanical properties of polyamide components on build parameters in the SLS process'[J].Journal of Materials Processing Technology,2007,182;477-488.
  • 6[4]DERBY B.Materials opportunities in layered manufacturing technology[J].JOURNAL OF MATERIALS SCIENCE,2002,37:3091-3092.
  • 7[5]Hopfield J J.Neurons with graded response have collective computational properties like those of two-state neurons[A].Proc of the National Academy of Science[C].USA,1984:3088-3092.
  • 8[7]Hornik K,Stinchcombe M,White H.Multiplayer Feedforward Networks Are Universal Approximators['J].Neural Networks,1989,2;25-36.
  • 9SONG R G, ZHANG Q Z. Heat treatment technique optimization for 7175 aluminum alloy by an artificial neural network and a genetic algorithm[J]. Journal of Materials Processing Technology, 2001, 11 (7): 84-88.
  • 10ZHAO Xiao-guang, CHEN Bing-zhen, HE Xiao-rong. A novel neural network for the prediction of process variables[J]. Science in China (Series A), 1995, 38(3): 355-367.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部