期刊文献+

基于Cosserat理论的微梁振动特性的尺度效应 被引量:19

SIZE EFFECT ON THE DYNAMIC CHARACTERISTIC OF A MICRO BEAM BASED ON COSSERAT THEORY
下载PDF
导出
摘要 不少微观实验已经证实,微尺度领域材料的力学性能存在尺度效应。采用偶应力理论(又称Cosserat理论)研究微梁振动特性(主要是固有频率)的尺度效应。文中首先对偶应力理论进行简介,然后采用Hamilton变分原理推导基于Cosserat理论的微梁无阻尼自由振动的微分方程,分析微梁固有频率对微尺度的依赖性。结果表明,当微梁的厚度减小到可以和材料的本征长度相比时,微梁的固有频率将显著增大。 Many micro experiments have shown that the mechanical properties of materials at micro scale are size dependent. The vibration characteristic ( mainly the resonant frequency) of a micro beam has been analyzed theoretically using couple stress theory ( Cosserat theory). Based on the couple stress elasticity theory the freely vibration equation of a micro beam in the absence of damping is derived using the Hamilton principle. The dependence of the resonant frequency of a micro beam on its size is analyzed, and the results show that the resonant frequency will increase markedly when the thickness of the beam decreases to a value which is comparable to the material length scale parameter.
作者 康新 席占稳
出处 《机械强度》 EI CAS CSCD 北大核心 2007年第1期1-4,共4页 Journal of Mechanical Strength
基金 国家自然科学基金资助项目(10572060)~~
关键词 尺度效应 偶应力理论 HAMILTON原理 固有频率 Size effect Couple stress theory Hamilton principle Resonant frequency
  • 相关文献

参考文献18

  • 1Lam D C C, Yang F, Chong A C M, Wang J, Tong P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 2003, 51:1 477 - 1 508.
  • 2Stolken J S, Evans A G. A microbend test method for measuring the plasticity length scale. Acta Mater, 1998, 46(14): 5 109 - 5 115.
  • 3Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity:theory and experiment. Acta Metall Mater, 1994, 42(2) : 475 - 487.
  • 4丁建宁,孟永刚,温诗铸.多晶硅微电子机械构件材料强度尺寸效应研究[J].机械强度,2001,23(4):385-388. 被引量:12
  • 5Chong A C M, Yang F, Lam D C C, Tong P. Torsion and bending of micron-scaled structures. J. Mater. Res., 2001, 16 (4) : 1 052 - 1 058.
  • 6Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids, 1993, 41(2): 1 825- 1857.
  • 7Lazopoulos K A. On the gradient strain elasticity theory of plates.European Journal of Mechanics A/Solids, 2004, 23:843 - 852.
  • 8Yang F, Chong A C M, Lam D C C, Tong P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 2002, 39:2 731 - 2 743.
  • 9Zang X, Sharam P. Inclusions and in homogeneities in strain gradient elasticity with couple stresses and related problems. International Journal of Solids and Structures, 2005, 42:3 833 - 3 851.
  • 10Lei Li, Shuisheng Xie. Finite element method for linear micropolar elasticity and numerical study of some scale effect phenomena in MEMS.International Journal of Mechanical Sciences, 2004, 46:1 571 - 1 587.

二级参考文献20

  • 1Shu J Y,Int J Solids Struct,1998年,35卷,1363页
  • 2Chen J W,J Mech Phys Solids,1998年,46卷,5期,789页
  • 3Nix W D,J Mech Phys Solids,1998年,46卷,411页
  • 4Hwang K C,Mat Sci Res Int,1998年,4卷,4期,227页
  • 5Huang Y,Adv Fracture Research(Ninth Int Conf Fracture),1997年,5卷,2275页
  • 6Huang Y,J Mech Phys Solids,1997年,45卷,439页
  • 7Wei Y,J Mech Phys Solids,1997年,45卷,1253页
  • 8Smyshlyaev V P,J Mech Phys Solids,1996年,44卷,465页
  • 9Xia Z C,J Mech Phys Solids,1996年,44卷,1621页
  • 10Huang Y,IUTAM Symposium on Nonlinear Analysis of Fracture,1995年,231页

共引文献67

同被引文献249

引证文献19

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部