期刊文献+

一种用于模拟汉字认知过程的多层自组织神经网络

Simulation of Chinese characters learning with improved multi-SOM network
下载PDF
导出
摘要 为了模拟汉语初学者的汉字认知过程,在Kohonen神经网络的基础上,改进了其网络结构和算法,并且将改进后的网络输出层根据Hebbian学习规则连接,构建了一个多Kohonen网络协同工作的汉字认知自组织神经网络模型.模拟研究结果表明,模型能够成功地学习到汉字的结构类型,且能有效识别出汉字的部件,在一定程度上模拟了汉字认知的部分过程,说明该模型用于汉字认知乃至汉语言习得的可行性. In order to simulate the Chinese character acquisition process, this paper set up a multilayer selforganizing maps (SOM) network model based on improved Kohonen network. The model's output maps, which adapt modified algorithm and expand neuron' s neighborhood, were connected via associative links updated by Hebbian learning. After training the model could learn Chinese character architecture successfully and also do well in Chinese character component recognition. The simulation results demonstrated that the feasibility of further research in Chinese character acquisition and even Chinese language learning with this model was possible.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2007年第1期102-106,共5页 Journal of University of Science and Technology Beijing
关键词 自组织神经网络 多层 汉字学习 汉字结构类型 汉字部件 SOM network multilayer Chinese character learning Chinese character architecture Chinese character components
  • 相关文献

参考文献11

二级参考文献84

共引文献160

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部