期刊文献+

TEI@I方法论及其在外汇汇率预测中的应用 被引量:35

TEI@I Methodology and Its Application to Exchange Rates Prediction
下载PDF
导出
摘要 基于TE I@I方法论的理论框架,构建了一个基于TE I@I方法论的外汇汇率预测模型。在此模型中,传统的经济计量模型用于处理外汇汇率的主要趋势,人工神经网络技术用于分析外汇汇率的非线性,而文本挖掘和专家系统用于处理外汇市场中的突现性和不稳定性。最后,基于集成的思想,利用支持向量回归技术对上述3个部分进行非线性集成,从而获得一个更为精确的预测结果。通过实证方法验证了基于TE I@I方法论的外汇汇率预测模型的有效性。 On the basis of TEI@I methodology's theoretical framework, a TEI@I-based foreign exchange rates forecasting model is proposed, in which econometrical models are used to forecast the main trends of the rates, the nonlinear components of the rates are analyzed by using artificial neural network (ANN) models and the impacts of irregular and the infrequent future factors on the rates are explored using text mining and rule-based expert systems techniques. A fully novel nonlinear integrated forecasting approach with error correction and judgmental adjustment is formulated by means of support vector regression technique. For further illustration, the effectiveness of the TEI@I-based foreign exchange rates forecasting model was verified by the three foreign exchange rates.
出处 《管理学报》 2007年第1期21-27,共7页 Chinese Journal of Management
基金 国家自然科学基金优秀创新群体基金资助项目(70221001) 香港城市大学战略研究基金资助项目(7001677 7001806)
关键词 外汇汇率预测 TEI@I方法论 经济计量模型 人工神经网络 文本挖掘 专家系统 支持向量机 非线性集成 foreign exchange rates prediction TEI@I methodology econometrics artificial neural networks text mining expert system support vector regression nonlinear integration
  • 相关文献

参考文献11

  • 1[1]Deboeck G J.Trading On the Edge:Neural,Genetic,and Fuzzy Systems for Chaotic Financial Markets[M].New York:Wiley,1994.
  • 2[2]Yaser S A M,Atiya A F.Introduction to Financial Forecasting[J].Applied Intelligence,1996,6:205-213.
  • 3[3]Hann T H,Steurer E.Much Ado about Nothing? Exchange Rates Forecasting:Neural Networks vs.Linear Nodels Using Monthly and Weekly Data[J].Neurocomputing,1996,10:323-339.
  • 4[4]WANG S Y.TEI@I:A New Nethodology for Studying Complex Systems[Z].The International Workshop on Complexity Science,Tsukuba,Japan,2004.
  • 5WANGShouyang,YULean,K.K.LAI.CRUDE OIL PRICE FORECASTING WITH TEI@I METHODOLOGY[J].Journal of Systems Science & Complexity,2005,18(2):145-166. 被引量:73
  • 6[6]Rumelhart D,Hinton G,Williams R.Learning Internal Representations by Error Propagation[C].//Rumelhart D,McClelland J.Parallel Distributed Processing:Explorations in the Microstructure of Cognition[M].Cambridge,MA:MIT Press,1986:318-363.
  • 7[7]Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
  • 8[8]ZHANG G P.Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model[J].Neurocomputing,2003,50:159-175.
  • 9[9]CHEN A S,Leung M T.Regression Neural Network for Error Correction in Foreign Exchange Forecasting and Trading[J].Computers & Operations Research,2004,31:1049-1068.
  • 10[10]Edmundson B,Lawrence M,O'Connor M.The Use of Non-time Series Information in Sales Forecasting:A Case Study[J].Journal of Forecasting,1988,7(3):201-211.

二级参考文献36

  • 1G.P.Zhang, E. B. Patuwo, M. Y. Hu, A simulation study of artificial neural networks for nonlinear time-series forecasting, Computers and Operations Research, 2001, 28: 381-396.
  • 2A. S. Chen, M. T. Leung, Regression neural network for error correction in foreign exchange rate forecasting and trading, Computers and Operations Research, 2004, 31(7): 1049-1068.
  • 3J. W. Denton, How good axe neural networks for causal forecasting?, Journal of Business Forecasting, 1995, 14: 17-20.
  • 4I. S. Markham, T. R. Rakes, The effect of sample size and variability of data on the comparative performance of artificial networks and regression, Computers and Operations Research, 1998, 25:251-263.
  • 5G. P. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, 2003, 50: 159-175.
  • 6B.Edmundson, M. Lawrence, M. O'Connor, The use of non-time series information in sales forecasting: a case study, Journal of Forecasting, 1988, 7(3): 201-211.
  • 7C. Wolfe, B. Flores, Judgmental adjustment of earning forecasts, Journal of Forecasting, 1990,9(4): 389-405.
  • 8S. Y. Wang, TEI@I: a new methodology for studying complex systems, presented at Workshop on Complexity Science, Tsukuba, April 22-23, 2004.
  • 9S. Y. Wang, L. A. Yu, TEI@I-a new methodology for studying volatility of international oil price, presented at the Open Conference of the International Research Team of AMSS on Complexity Science, Beijing, June 17-19, 2004.
  • 10L. A. Yu, S. Y. Wang, K. K. Lal, A hybrid AI system for forex forecasting and trading dectsion through integration of artificial neural network and rule-based expert system, Submitted to Expert Systems with Applications, 2003.

共引文献72

同被引文献469

引证文献35

二级引证文献176

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部