摘要
基于传统的最优潮流模型及多机电力系统的经典数学模型,利用隐式梯形积分法,将电力系统中所有发电机转子摇摆方程差分化为等式约束、发电机转子相对摇摆角稳定极限作为不等式约束,将其作为暂态稳定条件加入最优潮流的等式约束和不等式约束方程中,提出了一种考虑暂态稳定约束的可用输电能力计算的计算方法,用原始-对偶内点法求解该模型,并通过引入一个非线性互补函数改进原对偶内点法中的互补松弛变量在每次迭代中都必须保持正向的缺点,使优化问题的求解效率得到提高。14节点系统计算为例说明了该方法的有效性。
Based on the general OPF model and multi-machine power system classical mathematic model, by using the implicit trapezoidal rule, all swing equations will be converted into numerical equivalent algebraic equations set which involved in equality constraints set, and all rotors' angles related to COI are used to be inequality constraints. According to the above, a new OPF module is proposed to calculate the available transfer capability with transient stability constraints. Using primal-dual interior point method to analyze the model, a nonlinear complementary function is proposed to overcome the disadvantages which in each iterations, the primal-dual interior method's complementarity relaxations must keep positive direction. Calculation result of 14-bus power system proves the methods effectiveness.
出处
《继电器》
CSCD
北大核心
2007年第1期68-71,76,共5页
Relay
关键词
电力系统
可用输电能力
最优潮流
暂态稳定
非线性互补函数
power system
available transfer capability
optimal power flow
transient stability
nonlinear complementary function