期刊文献+

考虑暂态稳定约束的可用输电能力的计算 被引量:1

Calculation of available transfer capability with transient stability constraints
下载PDF
导出
摘要 基于传统的最优潮流模型及多机电力系统的经典数学模型,利用隐式梯形积分法,将电力系统中所有发电机转子摇摆方程差分化为等式约束、发电机转子相对摇摆角稳定极限作为不等式约束,将其作为暂态稳定条件加入最优潮流的等式约束和不等式约束方程中,提出了一种考虑暂态稳定约束的可用输电能力计算的计算方法,用原始-对偶内点法求解该模型,并通过引入一个非线性互补函数改进原对偶内点法中的互补松弛变量在每次迭代中都必须保持正向的缺点,使优化问题的求解效率得到提高。14节点系统计算为例说明了该方法的有效性。 Based on the general OPF model and multi-machine power system classical mathematic model, by using the implicit trapezoidal rule, all swing equations will be converted into numerical equivalent algebraic equations set which involved in equality constraints set, and all rotors' angles related to COI are used to be inequality constraints. According to the above, a new OPF module is proposed to calculate the available transfer capability with transient stability constraints. Using primal-dual interior point method to analyze the model, a nonlinear complementary function is proposed to overcome the disadvantages which in each iterations, the primal-dual interior method's complementarity relaxations must keep positive direction. Calculation result of 14-bus power system proves the methods effectiveness.
出处 《继电器》 CSCD 北大核心 2007年第1期68-71,76,共5页 Relay
关键词 电力系统 可用输电能力 最优潮流 暂态稳定 非线性互补函数 power system available transfer capability optimal power flow transient stability nonlinear complementary function
  • 相关文献

参考文献5

二级参考文献57

  • 1严正,陈雪青,相年德,吴榕,李群炬.优化潮流牛顿算法的研究及应用[J].清华大学学报(自然科学版),1989,29(1):69-79. 被引量:11
  • 2郝玉国,张靖,于尔铿,刘广一.最优潮流的实用化研究[J].中国电机工程学报,1996,16(6):388-391. 被引量:18
  • 3郝玉国,刘广一,于尔铿.一种基于Karmarkar内点法的最优潮流算法[J].中国电机工程学报,1996,16(6):409-412. 被引量:43
  • 4谢开 宋永华 于尔铿 等(Xie Kar Song Yonghua Yu Erkeng et.(Optimalpower flow based spot pricing algorithm via interior point methods)[J].电力系统自动化(Automation of Electric Power Systems),1999,23(2):5-10.
  • 5诸骏伟.电力系统分析[M].北京:水利电力出版社,1995..
  • 6Available transfer capability definitions and determination [R]. North American Electric Reliability Council (NERC), Princeton, NJ, June 1996.
  • 7Ejebe G C, Waight J G, Santos-Nieto M, et al. Fast calculation of linear available transfer capability [J]. IEEE Trans. on Power System. 2000, 15(3): 1112-1116.
  • 8Gisin B S, Obessis M V, Mttsche J V. Practical methods for transfer limit analysis in the power industry deregulated environment[A]. IEEE International Conference on Power Industry Computer Applications [C]. Santa Clara,California,May 1999: 261-266.
  • 9Ejebe G C, Tonj J, Waight J G, et al. Available Wansfer capability calculations [J]. IEEE Trans on Power System. 1998, 13(4): 1521- 1527.
  • 10Shaaban M, Ni Y X, Wu F F. Transfer capability computations in deregulated power systems [A]. In: Proceedings of the 33rd Hawaii International Conference on System Sciences[C]. Hawaii, January 2000: 1260-1264.

共引文献154

同被引文献17

  • 1韦化,阳育德,李啸骢.多预想故障暂态稳定约束最优潮流[J].中国电机工程学报,2004,24(10):91-96. 被引量:34
  • 2孙景强,房大中,锺德成.暂态稳定约束下的最优潮流[J].中国电机工程学报,2005,25(12):12-17. 被引量:38
  • 3薛禹胜.电力系统暂态稳定快速分析和控制的现状和发展[J].电力系统自动化,1995,19(1):6-13. 被引量:16
  • 4谢俊,陈星莺.一种计及暂态稳定约束最优潮流的快速方法[J].继电器,2006,34(10):15-17. 被引量:4
  • 5Gan Deqiang, Thomas R J, Zimmerman R D. Stability- constrained optimal power flow [J]. IEEE Transactions on Power Systems, 2000, 15(2): 535-540.
  • 6JIANG Quan-yuan, GENG Guang-chao. A reduced-space interior point method for transient stability constrained optimal power flow [J]. IEEE Transactions on Power Systems, 2010, 25(3): 1232-1240.
  • 7CHEN Luo-nan, Yasuyuki Tada, Hiroshi Okamoto, et al. Optimal operation solutions of power systems with transient stability constraints[J]. IEEE Transactions on Circuits and Systems, 2001, 48(3): 327-339.
  • 8Xia Y, Chan K W, Liu M. Direct nonlinear primal-dual interior point method for transient stability constrained optimal power flow[J]. IEE Proc on Gener, Transm, and Distrib, 2005, 152(1): 11-16.
  • 9Biegler L T, Nocedal J, Schmid C. A reduced Hessian method for large-scale constrained optimization[J]. SIAMJOptim, 1995, 5(2): 1-36.
  • 10Schmid C. Reduced Hessian successive quadratic programming for large-scale process optimization[D].Pittsburgh (PA): Carnegie Mellon University, 1994.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部