期刊文献+

应用在联合细分曲面的离散PDE光顺方法 被引量:2

Application of discrete PDE fairing method to combined subdivision surface
下载PDF
导出
摘要 将离散偏微分方程(PDE)光顺方法应用在联合细分的控制网格光顺过程中,即以插值曲线对应的控制边为界将控制网格分割为不重叠的子网格.针对各个子网格分别求解离散PDE,得到控制网格理想曲率,然后在控制网格法向调整控制顶点位置,使控制网格的实际离散曲率逼近于理想曲率.在不同细分层次上,分别对各个子网格光顺,也就实现了控制网格局部和全局的光顺,同时消除了联合细分极限曲面中存在的凹陷等不光顺现象.除奇异点外,极限曲面均达到G2连续.该方法提高了联合细分曲面的质量,扩宽了联合细分的应用范围. Discrete partial differential equation (PDE) control mesh of combine subdivision surface. Bounded fairing method is directly applied to fair the by control edges related with curves, control mesh is partitioned into submeshes without overlapping. By solving discrete PDE the ideal curvature of single submesh can be obtained. The adjustment of the control vertexes at their 0ormal will make the actual discrete curvature approach to the ideal curvature. While fairing the submeshes separately at different subdivision level, the local and global fairing of control mesh is achieved, and the typical concave phenomenon in combined subdivision surface is removed. The limited surface reaches G^2 continuity except at extraordinary vertex. The method improves combined subdivision surface's quality and extends the use of combined subdivision.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第1期35-39,共5页 Journal of Southeast University:Natural Science Edition
基金 国防基础科研资助项目
关键词 离散PDE 联合细分 光顺 discrete partial differential equation combined subdivision fairing
  • 相关文献

参考文献13

  • 1Ma Weiyin.Subdivision surfaces for CAD:an overview[J].Computer Aided Design,2005,37(7):693-709.
  • 2Levin A.Interpolating nets of curves by smooth subdivision surfaces[C]//Proceedings of the ACM SIGGRAPH Conference on Computer Graphics.New York:ACM,1999:57-64.
  • 3Levin A.Combined subdivision scheme[D].Israel:Tel-Aviv University,2000.
  • 4Kuragano J,Takarada Y,Suzuki H,et al.Subdivision surface generation from a set of unconnected curves[J].Journal of the Japan Society of Precision Engineering,2003,69(9):1264-1269.
  • 5Halstead M,Kass M,de Rose T.Efficient,fair interpolation using Catmull-Clark surfaces[J].Computer Graphics,1993,27(3):35-44.
  • 6周海,周来水.Novel method for exactly evaluating the energy of Catmull-Clark subdivision surfaces[J].Journal of Southeast University(English Edition),2005,21(4):453-458. 被引量:1
  • 7Desbrun M,Meyer M,Schroder Peter,et al.Implicit fairing of irregular meshes using diffusion and curvature flow[C]//Proceeding of the ACM SIGGRAPH Conference on Computer Graphics.New York:ACM,1999:317-324.
  • 8Zhao Huanxi,Xu Guoliang.Triangular surface mesh fairing via Gaussian curvature flow[J].Journal of Computational and Applied Mathematics,2006,195(2):300-311.
  • 9Schneider R,Kobbelt L.Geometric fairing of irregular meshes for free-form surface design[J].Computer Aided Geometric Design,2001,18(4):359-379.
  • 10Xu Guoliang.Discrete Laplace-Beltrami operators and their convergence[J].Computer Aided Geometric Design,2004,21(8):767-784.

二级参考文献18

  • 1Golub G., Van C.. Matrix Computations. Baltimore: John Hopkins University Press, 1996
  • 2Su B.Q., Liu D.Y.. Computational Geometry. Shanghai: Shanghai Scientific and Technical Publishers, 1981(in Chinese)(苏步青, 刘鼎元. 计算几何. 上海: 上海科学技术出版社, 1981)
  • 3Hoschek J., Lasser D.. Fundamentals of Computer Aided Geometric Design. Wellesley: A K Peters Press, 1989
  • 4Welch W., Witkin A.. Variational surface modeling. In: Proceedings of ACM SIGGRAPH'92 Conference, Chicago, 1992, 157~166
  • 5Welch W., Witkin A.. Free-form shape design using triangulated surfaces. In: Proceedings of ACM SIGGRAPH'94 Conference, Orlando, 1994, 247~256
  • 6Moreton H., Seqúin C.. Functional optimization for fair surface design. In: Proceedings of ACM SIGGRAPH'92 Conference, Chicago,1992, 167~176
  • 7Taubin G.. A signal processing approach to fair surface design. In: Proceedings of ACM SIGGRAPH'95 Conference, Los Angeles, 1995, 351~358
  • 8Desbrun M., Meyer M. et al.. Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of ACM SIGGRAPH'99 Conference, Los Angeles, 1999, 317~324
  • 9Desbrun M., Meyer M. et al.. Anisotropic feature-preserving denoising of height fields and bivariate data. In: Proceedings of Graphics Interface 2000, Montreal, 2000, 145~152
  • 10Taubin G.. Linear anisotropic mesh filters. IBM (Watson T.J. Research Center), Research Technical Report: RC-22213, 2001

共引文献3

同被引文献12

  • 1Joong-Hyun Rhim,Doo-Yeoun Cho,Kyu-Yeul Lee,Tao-Wan Kim.Generation of Discrete Bicubic G^1 B-Spline Ship Hullform Surfaces from a Given Curve Notwork Using Virtual Iso-Parametric Curves[J].Journal of Computer Science & Technology,2006,21(2):265-271. 被引量:1
  • 2MA Weiyin.Subdivision surfaces for CAD -an overview[J].Computer Aided Design,2005,37(7):693-709.
  • 3CATMULLE,CLARK J.Recursively generated B-spline surfaces on B-spline surfaces on arbitrary topological meshes[J].Computer-Aided Design,1978,10(6):350-355.
  • 4LEVIN A.Combined subdivision scheme[D].Tel Aviv,Israel:Tel-Aviv University,2000.
  • 5REN Bingyin,LI Xiaodong,WU Zhuoqi,et al.Local sharp feature generation and shape control of recursive subdivision surfaced J].Japan Society of Mechanical Engineers International Journal,Series C:Mechanical Systems,Machine Elements and Manufacturing,2005,48(2):170-175.
  • 6BIERMANN H,MARTIN I M,ZORIN D,et al.Sharp features on muhiresolution subdivision surfaces[J],Graphical Models,2002,64(2):61-77.
  • 7DEROSE T,KASS M,TIEN T.Subdivision surfaces in character animation[C]//Proceedings of ACM SIGGRAPH Conference on Computer Graphics.New York,N.Y.,USA:ACM,1998:85-94.
  • 8张景峤,王国瑾.基于曲线插值的细分曲面尖锐特征的生成[C]//第十二届全国图象图形学学术会议论文集.北京:清华大学出版社,2005:473-478.
  • 9LEE A,MORETON H.HOPPE H.Displaced subdivision surfaces[C]// Proceedings of ACM SIGGRAPH Conference on Computer Graphics.New York,N.Y.,USA:ACM,2000:85-94.
  • 10THALL A L.Deformable solid modeling via medial sampling and displacement subdivision[D].Chapel Hill,N.C.,USA:University of North Carolina at Chapel Hill,2004.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部