摘要
引入ν-支持向量机,通过构造和求解一个凸优化问题,同时实现了对边际电价的预测和对置信区间的估计,且无需假定预测偏差的概率分布.在ν-支持向量回归中,当ε>0时,ν是错误样本的个数占总样本个数份额的上界.利用该性质,边际电价预测的置信度和置信区间可以很自然地用参数1-ν和变量ε来表示,这为发电公司进行竞价方案的风险分析打下了很好的基础.算例仿真表明,该方法具有较好的泛化性能和较高的预测精度.
u-support vector machine is employed to achieve system marginal price prediction and confidence interval estimation simultaneously by constructing and solving a convex optimization problem. Hypothesis for prediction-error distribution is unnecessary in this method. In v-support vector regression, v is an upper bound on the fraction of errors if the resulting ε is greater than zero, therefore prediction confidence level and confidence interval can be expressed with the parameter 1 - v and variable 8 naturally, which will play important role in risk assessment of bidding strategy. Simulation results demonstrate that this method has better generalization performance and prediction accuracy.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第1期70-73,共4页
Journal of Southeast University:Natural Science Edition
关键词
电力市场
边际电价
V-支持向量机
置信区间
electricity market
system marginal price
v-support vector machine
confidence intervals