期刊文献+

基于ν-支持向量机的边际电价预测及置信区间估计 被引量:2

System marginal price prediction and confidence interval estimation with ν-support vector machine
下载PDF
导出
摘要 引入ν-支持向量机,通过构造和求解一个凸优化问题,同时实现了对边际电价的预测和对置信区间的估计,且无需假定预测偏差的概率分布.在ν-支持向量回归中,当ε>0时,ν是错误样本的个数占总样本个数份额的上界.利用该性质,边际电价预测的置信度和置信区间可以很自然地用参数1-ν和变量ε来表示,这为发电公司进行竞价方案的风险分析打下了很好的基础.算例仿真表明,该方法具有较好的泛化性能和较高的预测精度. u-support vector machine is employed to achieve system marginal price prediction and confidence interval estimation simultaneously by constructing and solving a convex optimization problem. Hypothesis for prediction-error distribution is unnecessary in this method. In v-support vector regression, v is an upper bound on the fraction of errors if the resulting ε is greater than zero, therefore prediction confidence level and confidence interval can be expressed with the parameter 1 - v and variable 8 naturally, which will play important role in risk assessment of bidding strategy. Simulation results demonstrate that this method has better generalization performance and prediction accuracy.
作者 李益国 沈炯
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第1期70-73,共4页 Journal of Southeast University:Natural Science Edition
关键词 电力市场 边际电价 V-支持向量机 置信区间 electricity market system marginal price v-support vector machine confidence intervals
  • 相关文献

参考文献9

二级参考文献37

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2王振晓(Wang Zhenxiao).分类器设计中特征选择问题的研究:[硕士学位论文](Research on Feature Selection for Classifier Design,Thesis)[M].上海:上海交通大学(Shanghai:Shanghai Jiaotong University),2003..
  • 3[8]Gao Feng, Guan Xiaohong, Gao Xiren. Forecast Power Market Clearing Price Using Neural Network. In: Proceedings of 3rd World Congress on Intelligent Control and Automation. Hefei: 2000
  • 4[10]Fahlman S E, Lebiere Christian. The Cascade-correlation Learning Architecture. In: Advances in Neural Information Processing Systems (NIPS89) Morgan-Kaufmann, San Mateo CA: 1990. 524~532
  • 5[11]Fahlman S E. Faster-learning Variations on Back-propagation: An Empirical Study. In: Proceedings of the 1988 Connectionist Models Summer School. Morgan Kaufmann: 1988
  • 6[1]Ni Erna, Luh P B. Forecasting Power Market Clearing Price and Its Discrete PDF Using a Bayesian-based Classification Method.In: Power Engineering Society Winter Meeting. Columbus (USA): 2001.1518~1523
  • 7[2]Guan X H, Lun P B. Integrated Resource Scheduling and Bidding in the Deregulated Electric Power Market: New Challenges. Discrete Event Dynamic Systems: Theory and Applications, 1999,9(4)
  • 8[3]Skantze Petter,Ilic Marija. Stochastic Modeling of Electric Power Prices in a Multi-market Environment. In:Power Engineering Society Winter Meeting. Singapore: 2000. 1109~1114
  • 9[4]Weber J D, Overbye T J. A Two-lever Optimization Problem for Analysis of Market Bidding Strategies. In: Power Engineering Society Summer Meeting. Edmonton: 1999. 682~687
  • 10[6]Szkuta B R, Sanabria L A, Dillon T S. Electricity Price Short-term Forecasting Using Artificial Neural Networks. IEEE Trans on Power Systems, 1999, 14(3):851~857

共引文献100

同被引文献25

引证文献2

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部