摘要
讨论了协方差阵未知的椭球等高线性模型中的稳健性问题.证明当协方差阵在一定范围内变动时,广义最小二乘估计在一大类损失函数下部是风险最小的估计;广义最小二乘估计关于协方差阵和损失函数同时具有稳健性.
Linear regression model with elliptically symmetric errors and unknown dispersion matrix was discussed. For a given matrix ∑0, when the real dispersion matrix varying within certain range, the GLSE β∑(∑0) = (X'∑o^-1X)^-1X']E0^-1y is the minimum risk estimator under a large class of loss functions, which implies the GLSE is a robust estimator with respect to dispersion matrix and loss functions.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第1期65-69,共5页
Journal of East China Normal University(Natural Science)