期刊文献+

非标定图像对最小化畸变几何校正方法研究 被引量:5

Minimizing deformation geometric rectification of non-calibration stereovision
下载PDF
导出
摘要 图像校正需要对图像进行透视变换,不可避免会产生欠采样或过采样问题,同时射影变换会引起图像扭曲,造成图像对之间相似性丢失。为了降低图像校正后的畸变程度,重点研究了图像校正过程中不同类型图像畸变问题。通过图像对规范化简化基础矩阵,并通过考虑几何约束简化校正变换矩阵;然后求取射影变换权值变化测度之和的极值以实现最小化射影畸变;最后采用Jacobian行列式度量校正前后的局部区域变化,求得最小化重采样效果的矩阵系数。采用该校正变换矩阵对非标定图像对进行平面校正可以减轻射影扭曲程度和重采样效果。 Projective transform in the process of image rectification produces under-sampling or over-sampling. To reduce deformation from image rectification, multi-type image deformation was studied emphatically. Firstly, a pair of images was normalized to simplify fundamental matrix, and the geometric constraint was applied to simplify rectification transform matrix. Secondly, the extremum of sum of projective transform weight change was solved to minimize projective distortion. Lastly, the rectification transform matrix was solved to minimize resampling effect which was weighed by Jacobian determinant. A planar rectification on epipolar geometry from the matrix could minimize the deformation including the projection distortion and the resampling effect.
作者 杨必武
出处 《光电工程》 EI CAS CSCD 北大核心 2007年第1期80-84,共5页 Opto-Electronic Engineering
基金 军队装备维修保障项目(2004-010)
关键词 射影扭曲 重采样效果 畸变 平面校正 Jacobian行列式 Projective distortion Resampling effect Deformation Planar rectification Jacobian determinant
  • 相关文献

参考文献16

  • 1沈沛意,王伟,吴成柯.基于汇聚立体视觉的图像校正算法[J].西安电子科技大学学报,1999,26(3):320-323. 被引量:4
  • 2C.C.Slama.Manual of photogrammetry[M].Washington,DC:American Society of Photogrammetry,1980.1-5.
  • 3N.Ayache,C.Hansen.Rectification of Images for Binocular and Trinocular Stereovision[A].In Proceedings of the 9th International Conference on Pattern Recognition[C].Rome,Italy:IEEE,1988.11-16.
  • 4A.Fusiello,E.Trucco,A.Verri.Rectification with Unconstrained Stereo Geometry[A].Proceedings of the British Machine Vision Conference[C].University of Essex,UK:BMVC,1997.400-409.
  • 5A.Fusiello,E.Trucco,A.Verri.A compact algorithm for rectification of stereo pairs[J].Machine Vision and Applications,2000,12:16-22.
  • 6E.Cooke.Rectification:An Overview[R].Berlin:HHI Report'99,Heinrich-Hertz-Institute,1999.
  • 7Hyo Rim Jeong,Jong Soo Lee.A Study on the Planar Rectification[A].Proceedings of KIEE[C].[sl]:KIEE,2002.
  • 8Pollefeys M,Koch R,Van Gool L.A simple and efficient rectification method for general motion[A].Proceedings of the 7th International Conference on Computer Vision[C].Kerkyra,Greece:IEEE,1999.496-501.
  • 9Danirl Oram.Rectification for Any Epipolar Geometry[A].Proceedings of the British Machine Vision Conference[C].Manchester,UK:BMVC,2001.653-662.
  • 10R.I.Artley.Theory and practice of projective rectification[J].International Journal of Computer Vision,1999,35(2):1-16.

二级参考文献17

  • 1孙亦南,刘伟军,王越超.基于几何不变量的图像特征识别[J].计算机应用与软件,2004,21(12):1-3. 被引量:7
  • 2张晓霞,段发阶,叶声华,王春和.视觉检测系统定位误差分离方法[J].光电工程,1996,23(3):6-11. 被引量:1
  • 3张健新,段发阶,叶声华.双目传感器结构优化设计[J].光电工程,1996,23(3):12-17. 被引量:9
  • 4王伟,中国科学.E,1997年,27卷,2期,165页
  • 5Zhang Z Y,GMICV′95,1995年,253页
  • 6Grant I,Experiments Fluids,1995年,19卷,3期,214页
  • 7周孝宽,实用微机图象处理,1994年
  • 8吴立德,计算机视觉,1993年
  • 9Takayuki GUNJI,Sunyoung KIM,Masakazu KOJIMA,et al. PHoM -- a Polyhedral Homotopy Continuation Method for Polynomial Systems [R]. Tokyo:Department of Mathematical and Computing Sciences, Tokyo Institute of Technology,2003.
  • 10Marc POLLEFEYS,Luc VAN GOOL. Stratified Self-Calibration with the Modulus Constraint [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(8):707-724.

共引文献8

同被引文献31

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部