期刊文献+

基于最小方差Snake模型的医学图像分割 被引量:3

Medical Image Segmentation Based on The Minimum Variation Snake Model
下载PDF
导出
摘要 传统的参数活动轮廓模型(Snake模型)难于处理自动分割医学图像的弱边界。我们在分析参数活动轮廓和几何活动轮廓模型的基础上,提出最小方差参数活动轮廓模型,并成功应用于医学图像自动分割。该方法将气球力Snake模型中的恒定气球力修改为包含区域信息的变力,以目标和背景两区域具有最小方差为准则,引导轮廓线演化。实验结果表明,该模型对初始轮廓位置不敏感,能实现自动分割。对于带噪声的医学图像,先进行保边界特性的曲率流滤波,然后应用该模型也能取得满意的分割效果。 It is difficult for traditional parametric active contour (Snake) model to deal with automatic segmentation of weak edge medical image. After analyzing snake and geometric active contour model, a minimum variation snake model was proposed and successfully applied to weak edge medical image segmentation. This proposed model replaces constant force in the balloon snake model by variable force incorporating foreground and background two regions information. It drives curve to evolve with the criterion of the minimum variation of foreground and background two regions. Experiments and results have proved that the proposed model is robust to initial contours placements and can segment weak edge medical image automatically. Besides, the testing for segmentation on the noise medical image filtered by curvature flow filter, which preserves edge features, shows a significant effect.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2007年第1期32-35,共4页 Journal of Biomedical Engineering
关键词 最小方差 医学图像分割 弱边界 SNAKE模型 Minimum variation Medical image segmentation Weak edge Snake model
  • 相关文献

参考文献11

  • 1章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 2李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 3Xu C,Jr AY.On the relationship between parametric and geometric active contours.In:Proc.of Asilomar Conference on Signals,Systems,and Computers,2000:483-489
  • 4Cohen LD.On active contour models and balloons.CVGIP Image Understanding,1991;53(2):211
  • 5蒋晓悦,赵荣椿.一种改进的活动轮廓图像分割技术[J].中国图象图形学报(A辑),2004,9(9):1019-1024. 被引量:7
  • 6蒋晓悦,赵荣椿.B—样条子波在图像边缘检测中的应用[J].中国体视学与图像分析,2002,7(4):198-201. 被引量:8
  • 7Malladi R,Sethian JA.Shape modeling with front propagation:a level set approach.IEEE Transactions on Pattern Analysis Machine Intelligence,1995;17(2):158
  • 8Osher S,Sethian JA.Fronts propagating with curvature dependent speed:algorithms based on Hamilton-Jacobi formulations.Journal of Computational Physics,1988;79(1):12
  • 9Chan T,Vese L.Active contours without edges.IEEE Transactions on Image Processing,2001;10(2):266
  • 10张丽飞,王东峰,时永刚,邹谋炎.基于形变模型的图像分割技术综述[J].电子与信息学报,2003,25(3):395-403. 被引量:23

二级参考文献61

  • 1蒋晓悦,赵荣椿.B—样条子波在图像边缘检测中的应用[J].中国体视学与图像分析,2002,7(4):198-201. 被引量:8
  • 2章毓晋.图像处理和分析[M].清华大学出版社,1999,3..
  • 3赵松年 熊小芸.子波变换与子波分析[M].北京:电子工业出版社,1997..
  • 4[1]M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, Int'l J. Comp. Vis., 1987,1(4), 321-331.
  • 5[2]A.A. Amini, T. E. Weymouth, R. C. Jain, Using dynamic programming for solving variational problems in vision, IEEE Trans. on Patt. Anal. Mach. Intell., 1990, 12(9), 855-867.
  • 6[3]L.D. Cohen, On active contour models and balloons, CVGIP: Imag. Under., 1991, 53(2), 211-218.
  • 7[4]T. McInerney, D. Terzopoulos, A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis, Comp.Med. Image Graph., 1995, 19(1), 69-83.
  • 8[5]V. Caselles, F. Catte, T. Coll, F. Dibos, A geometric model for active contours, Numerische Mathematik, 1993, 66, 1-31.
  • 9[6]R. Malladi, J. A. Sethian, B. C. Vemuri, Shape modeling with front propagation: a level set approach, IEEE Trans. on Patt. Anal. Mach. Intell., 1995, 17(2), 158-175.
  • 10[7]V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, in Proc. 5th Int'l Conf. Comp.Vis., Cambridge, MA, 1995, 694-699.

共引文献371

同被引文献20

引证文献3

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部