摘要
设M为Banach空间X中的有界子集,在M上有一致收敛于f0的紧映射序列{Fn}。当{Fn}中每个元Fn满足一定条件时,Fn在集{Fn(x),x∈M}上均有不动点且唯一,然后讨论极限映射f0在集D=f0({f0x,x∈M})上不动点的存在性与唯一性。
In this thesis, the compact maps .sequence { Fn (x) } on the bounded subset M of Banach space X is supposed and the sequence { Fn(x) } satisfies that Fn converges to the map f0 uniformly on M. Then { Fn (x) } also satisfies some conditions in addition to the above so that each Fn of { Fn (x) } has unique fixed point in set { Fn(x) ,x ∈ M}. Then we will discuss the fixed point problem off0.
出处
《贵州师范大学学报(自然科学版)》
CAS
2007年第1期74-76,共3页
Journal of Guizhou Normal University:Natural Sciences
关键词
不动点
紧映射
连续映射
fixed point
compact maps
successive maps